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STANDARD OBSERVER RESPONSE

In the report that follows we show that the quantitative analysis of the
performance of the display/observer system based on the display MIF and on the
observer's sine wave response provides useful and easily applicable measures
for performance prediction. However, in order to assure the general applica-
bility of such measures, it 1s imperative that a set of "standarl observer sine
wave response curves" be established. A set, rather than a single curve, is
required in order to take into account the strong dependence on average bright-
ness of the sine wave response curve. We propose that under the auspices of
the appropriate government agencies and professional societies an internation-
al committee be set up to undertake the specification of the standard observer
sine wave response in a manner similar to that employed to establish the CIE
standard obs¢ rver color response. Such a committee would be charged with
ensuring that proper measurement techniques and experimental precautions are
employed, as well as the dissemination of the results to the relevant scienti-

fic, medical, and engineering institutions.
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b Grating contrast [Eq. (137)]
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cr, Two~dimensional visual capacity [Eq. (117)]
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i [Eqs. (13),(14)]
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] function input [Eq. (113)]
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Kell factor

Average luminance of displayed gratings

Maximum luminance of displayed gratings [Fig. 35]
Minimum luminance of displayed gratings [Fig. 35]
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Index denoting n'th sampling gate
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Spatial Fourier transform of printing function
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Viewing distance for maximum Cs
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14




Ro(w)
Ro(w'd’)
R(w)

Overall MIF of analog display system (one-dimensional)
Two-dimensional overall MTF of analog display system

Initial band-limiting MIF of sampled display system [Eq. (1)]
Dimensionless sampling width [Eq. (4)]

Number of discrete states availehle #~ a communication system
Average perceived signal power (brightness squared) for perfect
display [Eq. (85)]

Average signal power (brightness squared) as measured on display
screen

Average perceived signal power (brightness squared) [Eq. (50)]
Effective signal-to-noise ratio of human visual system

Total system signal-to-noise ratio (Eq. (92)]

Perceived signal-to-noise ratio [Eqs. (50), (51)]

Message duration time

Display width

Perceived edge width [Eq. (25)]

Width of sampling gate [Eq. (3)]

Distance coordinate along sine wave grating [Fig. 34]

Rectangular coordinate axes on display screen

Polar angle on display screen, as measured from the horizontal

Change in C3 due to anisotropy [Eq. (136)]

2

Change in viewing distance for maximum sz due to anisotropy
(Eq. (135)]

An arbitrary displacement of the input scene
Mean square perceived error [Eq. (82)]

Perceived angular width of a single edge transition [Eq. (29)]

Maximum pulse transmission rate of a communication system
Effective cutoff frequency of human visual system

Effective retinal frequency for complex gratings

Frequency for maximum O(v): Vo = 8 cycles/degree-of-vision [Fig. 5]
Retinal frequency coordinate along x and y axes, respectively

Frequency coordinate on the retina: v = wr/2m
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Renormalized Fourier transform of printing function [Eq. (11)]

Polar angle in two-dimensional frequency space, measured from the
horizontal

Signal power spectrum for input scenes

Radial distance coordinate on screen

Perceived spot area [Eq. (114)]

Lower cutoff frequency of signal power spectrum

Maximum display frequency in the horizontal direction
Geometric mean of Ory and o [Eq. (125)]

Maximum display frequency in the vertical direction

Maximum frequency for which MIF Ro(w,¢) is non-zero [Eq. (128)]
Maximum frequency for which MIF R(w) or Rb(m) is non-zero
Sampling frequency: W= 21t/xo [Eq. (3)]

Spatial frequency coordinate néasured on display screen
Bandwidth of communication system

Denoting the operation of taking the average over an ensemble of scenes

Denoting the operation of taking the average over an ensemble of
scenes and the average over the display screen.
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SECTION I

INTRODUCTION

The ultimate goal of our image analysis program is to develop a formalism
that can be employed to optimize the performance of sampled imaging systems,
subject to constraints that may include both engineering and economic considera-
tions. To achieve this goal we need to understand image sampling, to develop
two-dimensional image quality descriptors, to obtain a detailed description of
the performance of human visual perception, to combine our understanding of
image sampling and visual perception into a unified theory suitable for per-
formance prediction, and to test our theoretical predictions through suitable
simulation experiments. This report contains our findings during the first
phase of our .mage analysis program. It contains a number of new results con-
cerning the statistical properties of natural scenes, a complete, new, statis-
tical treatment of the one~dimensional image sampling problem, a new descriptor
suitable for the analysis of the perceived shapness of two-dimensional analog
{nonsampled) dlsplays having nonisotropic point-spread functions, and data ob-
tained from a set of psychophysical measurements aimed at the quantitative
understanding of the two-dimensional sine wave response of human visual pe:s-
ception.

Our approach has been that of linear systems analysis, using the methodology
of statistical communications theory. We are fully aware of the limitations of
linear system analysis when it is used to study highly nonlinear systems such
as human perception. Nevertheless, we know that all nonlinear physical systems
can be described in a perturbation sense by linear equations, and thus far we
found that the most important predictions obtained from our linear analysis
can be verified experimentally. We treat the image sampling and sampled image
perception in statistical terms. This is a significant departure from the
frequently employed standard approach of calculating the wave shape of sampled
simple test patterns. The standard approach allows one to gain an insight into
the detailed mechanisms of aliasing, but it does not predict how important
aliasing is. Our statistical approach predicts the most probable behavior of
the sampled display system. This way we can easily obtain quantitative per-

formance criteria for tle overall observer-imaging system for any sampling rate.
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Simple experimental observations cf our environment through sampling masks in-
dicate that with natural scenes th: perceived image quality does not go through
any sudden, sharp degradation as the sampling rate is changed from the "over-
sampled" to the "undersampled" case; as the sampling rate is continuously re-
duced, the perceived image quality is continuously degraded. The calculations
pr.sented in this report allow one to make quantitative estimates of this degra-
dation as a function of sampling rate.

The key elements of our statistical approach are (a) the description of
the information content of natural scenes in terms of the ensemble average
power spectral density of brightness fluctuations as a function of spatial
frequency; (b) the separation of a sazpled image into an information containing
signal component and an information degrading noise component; and (c) the
calculation of the perceived image as a noisy random signal filtered by the
sine wave response function of the human visual system. We found that natural
scenes are well described by a power spectrum that rolls off as the inverse
square of the spatial frequency. We defined three basi: quality descriptors:
the visual capacity that is a measure of the perceived sharpness, the perceived
signal-to-noise ratio that is a measure of the perceivable number of grey
levels, and an overall descriptor that combines sharpness and signal-to-noise
ratio and is a measure of the total visual information transfer capacity
of the display-observer system. As a consequence of the measured natural scene
power spectrum, we proved that the visual capacity is not only a sharpness
descriptor, but it is also proportional to the mean square perceived gradient
content (expectation value of the square of brightness gradient); i.e., the
visual capacity is also a measure of the actual visual information contained
in a perceived noise-free image. We carried out a number of detailed numerical
calculations concerning the perceived signal-to-noise ratio as a function of
sampling parameters and viewing distance. Whenever applicable, preliminary
simulation experiments carried out with block quantized images confirmed our
theoretical predictions. Also, we showed how our formalism can be employed to
optimize sampled display parameters subject to various constraints.

In all of our calculations we use a sine wave response curve of the human

visual system that was obtained from one-dimensional measurements. In order
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to verify that such one-dimensional response curves can be employed to describe
the general, two-dimensional visual perception, we carried out measurements

on a set of general, arbitrarily oriented sinusoidal stimuli that included

both arbitrarily oriented one-dimensional sinusoidal gratings and two-dimen-
sional sinusoidal brightness variations. We believe that the data presented

in this report constitute the first quantitive results on the two-dimensional
sine wave response of human perception. Our two-dimensional data is in general
agreement with predictions based on previously obtained one-dimensional data
and the assumption that linear superposition is applicable.

The report is organized in the following major parts. Section II describes

the measurements and the results pertinent to the information content of natural
scenes., Section III constitutes the bulk of the report and contains the
mathematical description of the Jisplay-observer system applicable to sam-
pled imaging. A second mathematical section, Section IV, treats the general
two-dimensional analog display problem. Here we calculate the perceived
image sharpness for displays that have anisotropic point-spread functions.
This is followed by a short section descriting a particularly simple method of
sampled imager simulation using a real-time block quantizer. Section VI con-
tains a detailed description of the sine wave response measurements, including
both one-dimensional and two-dimensirnal results.

19




e

SECTION II

STATISTICAL PROPERTIES OF NATURAL SCENES

In ihe mathematical analysis of communication systems, it is customary to
assume that the signal to be transmitted (and the noise that interferes with
the faithful reception of the signal) can be treated as stationary ergodic
processes in time [1]. Briefly, stationary in this sense implies that if we
measure the 3ignal (or noise) voltage, v, at times t, and ty then the sta-
tistical expectation value of the product of these two voltage readings depends
only on the time difference 1 = tl - t2. The statistical expectation value
can be obtained experimentally by performing actual measurements on a large
number of identical systems; i.e., on an ensemble of systems. Ergodic in this
sense implies that the time and the ensemble averages are equal; the average
voltage value obtained by time-averaging the signal (or noise) in a given system
is equal to that obtained by averaging the simultaneous voltage readings from
a large number of identical systems. For signals that describe stationary
ergodic processes, the Wiener-Khinchine theorem [1] shows that the power spec-
tral density is the Fourier transform of the auto-correlation function of the
signal. One can show that the power spectral density thus defined is equal
to that obtained by suitably averaging the Fourier coefficients which can be
calculated through direct Fourier analysis of the signal waveform [1]. The
power spectral density is a most convenient and extremely useful quantity when
analyzing the performance of a given communication channel in terms of random
signals.

We assume that the brightness variations of a natural scene*, as measured

by any scanning aperture [2], can be considered as stationary ergodic processes.

*By "natural scenes" we mean scenes that customarily constitute the normal

human environment. Our entire investigation is primarily concerned with the
most probable performance of imaging systems that present a distant natural
scene to a human viewer. The statistical behavior of specialized imaging
systems, for example, of a microscope system used to search for flaws in
periodic arrays of microcircuits will clearly be different. Most of the
general mathematical formulation presented in the following sections is also
applicable to the treatment of specialized imaging systems, provided that the
appropriate ensemble average power spectral density is used.
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We cannot offer an explicit proof for the validity of this assumption, but we
can offer two justifications for it: (a) it has been useful in connection with
virtually all signals treated in communication theory, and (b) whenever possible,
we compare the conclusions obtained by using this assumption with experimental
observations, and unless there is a conflict, we consider it correct. The
mathematical analysis presented in the following sections is based on this
assumption. In order to carry out these analyses we need to know the ensemble
average power spectral density for the brightness variations in natural scenes.

A convenient method to measure the desired spectral density is to analyze
experimentally the spectrum of elecironically transmitted brightness signals.
The brightness component of commercial, off-the-air television broadcasts
provides a suitable signal source for this analysis. We assume that this
brightness component provides a faithful representation of the brightness
variations in the original scene; i.e., we neglect the effect of system non-
linearities on the spectral power density. Even though some data are available
in the literature on the spectrum of television signals [3], to our knowledge,
no statistical data on a wide variety of scenes have been optained previously.

Our experimental procedure was the following. Off-the-air television
signals broadcast on VHF channels were analyzed with a commercially available
spectrum analyzer. The television receiver rf, i.f., and video circuits were
of sufficiently high quality that we assumed that they did not significantly
alter the video spectrum. The spectrum of the U. S. standard, baseband video
signals was slowly scanned at 0.4 and 4 s/MHz. A number of scans were taken
at various times. In all runs the input signal amplitude was normalized by
maintaining a constant sync tip to peak white video signal amplitude.

The results are shown in Fig. 1. The experimental data indicate that the
ensemble average brightness variations as a function of frequency roll off
smoothly at the rate of 20 dB/decade; i.e., the ensemble average power spectral
density ¢(w) is well described by ¢(w) = B/wz, where w is the frequency variable
and B is a normalization constant that is determined by the average scene
brightness.

The data points shown in Fig. 1 do not extend beyond 2.5 MHz (about 130
cycles/picture width) and below 15 kHz {about 1 cycle/picture width). On the
high end, the useful range is limited by the presence of the color component
in television broadcast signals. The lower limit is established by the hori-

zontal television line scanning rate.
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Figure 1. Statistical properties of televised scenes. The
relative spectral power density as a function
of frequency.

Several critical questions can be raised concerning our method of measure-
ment. The most serious question is whether our result is simply the consequence
of the television signal structure and not a measurement of scene content. The
television scanning process periodically samples the scene, and the power spectrum
s of a periodic sequence of constant amplitude sampling gates rolls off as the
inverse square of the frequency. Indeed, the spectrum of "white field" tele-
vision signals (i.e., signals that are void of any scene information) do ex-

hibit this expected power spectrum.
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To check the effect of the television line structure on the spectrum of
random signals with well-defined spectral properties, we performed a series of
experiments in which we used electronically generated band-limited white noise
with a Gaussian amplitude distribution as the "scene." Figure 2(a) shows the
noise source output, and Fig. 3(a), the corresponding spectrum. In Figs. 2(a),
(b), and (c), the vertical scale is signal voltage, and the horizontal scale
is time with a 20~-us-per-major-division scale. In Fig. 3, the vertical scale
is spectral density in dB, and the horizontal scale is a linear frequency scale,
with 0 to 5 MHz full scale. The signal to be analyzed was formed by sampling
the noise source output with composite video blanking and adding composite sync
and a suitable white level (average brightness). In Fig. 2(b) we show the
sampled noise signal and in Fig. 3(b), the corresponding spectrum; in Figs. 2(c)
and 3(c? we show the composite video noise signal and the corresponding spec-
trum, respectively. The white level was chosen so that, when the signal was ob-
served on an oscilloscope, the peak-to-peak noise excursions corresponded to
transitions from full black to full white. The true rms voltage value of the
noise signal corresponded to approximately 10 to 152 of the sync tip to full
white voltage difference of the television signal thus formed. The power spec-
trum ¢(w) of this noise signal is plotted together with that of off-the-air
television signals in Fig. 4. From Fig. 4 we concluded that the television
sampling process does not significantly influence the power spectrum over most
of the video frequency range.

A large dc component and a small random component provide another scene
structure that, when formed into a television signal, could lead to an inverse
square power spectrum that does not truly represent the scene content. The
most obvious characteristic of such a scene is low contrast. Qualitatively,
one can easily establish that natural scenes are not low contrast scenes; one
need only look at one's surroundings. Quantitative results can be obtained by
directly measuring local scene brightness with a spot brightness meter or by
examining typical monochrome television signals in the time domain. Such
measurements quickly reveal that, within the field-of-view of a typical camera
setup, brightness variations well in excess of 100:1 occur; and, a typical
television signal is characterized by sudden large amplitude variations rather
then by small, noise-like variations superimposed on a slowly varying constant

amplitude level lasting a full television line time.
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Band-!imited Gaussian white noise signal voltage as
a function of time. Vertical scale: arbitrary,
consistent throughout the series; horizontal scale:
20 .s/major division. (1) Noise source output;

(b) signal in (1) sampled with compusite blanking
sigr.ly (0) signal in (@) formed into composite
video signal.
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Figure 3. Power spectral density ot toe sisnals shown in Fig. 2
as a function of frequency, Vertical scale: 10 dB per
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Figure 4, Pcower spectral density of signals as a function of
frequency. Curve A: composite video signal formed
from 20 Hz to 2.5 MHz band-limited Gaussian white
noise. Curve B: average spectrum of off-the-air
video signals, obtained from approximately 3 x 106
TV scan lines, black to white signal amplitude set
to be approximately the same as for Curve A.

A number of additional control experiments were performed including the
spectral analysis of off-the-air scenes to which test signals with known spec-
tral properties were added, CCD camera output signals, and white fields with
small amounts of additive white noise. These control experiments cornfirmed
the validity of our main result. We conclude that our measuremeats using off-
the-air television broadcast signals for the representation of natural scenes
provide a reasonable estimate for the spatial frequency spectral content of such
scenes.

In connection with the measured 1/m2 spectral behavior, one can also make
the following general observations: First, note that the power spectrum of
random edges (randomly spaced with random amplitudes and step heights) also
rolls off as 1/m2. This is probably more than mere coincidence; it suggests
very strongly that natural scenes are characterized by edge transitions. This
suggestion is well supported by television practice, where good edge response
is known to be a much more important quality criterion then good high-frequency

response., Second, note that all cameras have a finite field-of-view and,
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therefore, the integrated brightness and the integrated square of the bright-
ness are finite. Then, it follows that the integral of the power spectral
density over all frequencies must be finite, no matter how small a scanning
aperture is used in measuring the brightness fluctuations. The simplest con-
tinuous high-frequency functional behavior that is integrable in the range

w, Sw<w, withw +=, is 1/m2. Third, that natural scenes cannot have a
flat power spectrum over any arbitrarily low spatial frequency regiﬁe 0<w j_ml)
can be shown through the following simple experimental observation. Prepare

a high-resolution, large photograph of a natural scene and place a sampling
mask (opaque mask with a regular array of very small openings) over it so that
the photograph is viewed through the mask. When this mask-scene combination is
viewed from various viewing distances, we find that, no matter how "undersampled"
the image is, from sufficiently far away the only effect of the mask is a re-
duction of scene brightness. If there were a low-frequency regime where the
scene spectrum was flat, one could always find a sufficiently low sampling rate
that would result in sufficient low-frequency beats to render the sampled scene
unintelligible at all viewing distances. A large number of image sampling
"experiments' have been performed; for example, the images reproduced in news-
papers, by CCD cameras, by digital image processing systems, and by block
quantizers [4] (se= Section V) are all sampled. No low-frequency sampling rate
limit associated with ensembles of natural scenes has ever been found. A more
concise statement of the above suggested experimental observations is that the
sampling noise in sampled natural scenes can be made arbitrarily small by
sufficiently increasing the viewing distance. (See the following sections for
the mathematical formulation of the above statement.) As a matter of fact, it
was precisely this experimental observation that motivated us to carry out the
ensemble average power spectral density measurements. In our initial attempts

to develop an analytical formulation of the random scene sampling problem we

*Rigorously, wj cannot be allowed to approach zero, because in that case

the spatial frequency bandwidth would go tc zero, and, therefore, the scene
would contain no information. Our experimental evidence suggests that the
arguments presented here hold for wy ] 10 w,, where wj is approximately equal
to the inverse picture width.
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used a white spectrum and found that our results contridicted simple observa-
tions. With the measured ¢ = B/w2 distribution, we found that our analytical
results are in good agreement with experimental observationms.

In the foregoing discussion we stressed the general requirement that the
ensemble average power spectral demsity must be integrable. A funecion of the
form B/m2 is not integrable at w = 0. Therefore, associated with the measured
ensemble average power spectral density of brightness fluctuations there exists

an effective lower scene-content cutoff frequency, w Our experimental proce-

LI
dure of using off-the-air television signals does not allow us to determine the

precise value of wy experimentally; the low frequency video spectrum is
dominated by the scan line structure of the video signal and not by the scene
content. Nevertheless, our data indicate that the low-frequency cutoff is the
order of the inverse scene width. Unless it is otherwise specified, in all of
our calculations throughout this report we will use a lower cutoff angular
spatial frequency w = 2n/image-width. For example, if the image extends over
10° of viewing angle at the observer, ve will use a lower cutoff frequency of

0.1 cycle/degree-of-vision.
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SECTION III

THEORY OF ONE-DIMENSIONAL SAMPLED DISPLAYS

A. ASSUMPTIONS AND LIMITATIONS

The approach presented here has been made possible by detailed experimental
studies [5] of the one-~dimensional spatial frequency response of the human
visual system. An important implication of the existence of a modulation trans-
fer function (MIF) of the visual system is that, given the perceived response
to one-dimensional sine waveslof known luminance modulation depth, one can,
in principle, compute the perceptual response to a one-dimensional scene which
consists of arbitrary luminance variations. This follows directly from Fourier's
theorem, applied to one spatial dimension. Thus, it becomes possible, under
certain circumstances, to treat the picture-producing device, which we call a
display, and the human observer as components of an overall linear system which
can be described by a set of processing parameters, transfer functions, and
noise sources. In that case, one can bring to bear the mathematical apparatus
of statistical communication theory to describe quantitatively the performance
capabilities of the display-observer system. This is, in essence, the spirit
of our approach.

The major assumptions we make in deriving the results presented here are
listed below.

(1) Linearity. This means that both the display and observer can be
treated by linear response theory, implicitly confining us to a
small-signal analysis. For a linear display, we require only that
there be sufficient background brightness surrounding the display
to allow the perception of visual information to be treated as a
perturbation. The magnitude of the adaptive luminance determines
the exact form of the MTF of the human visual system. Whereas, the
detailed calculations presented here were carried out using an MIF
measured at very high brightness [6], our mathematical results can
be applied at any level of adaptive luminance provided the proper
MIF for that level is employed. On the other hand, if the display
is nonlinear, we also require that the magnitude of the brightness
variations on the display screcn be much less than the average

brightness.
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(2) Quasi-static displays. Our analysis neglects temporal effects on
the MIF of the human visual system. Therefore, strictly speaking,
the results of this report apply only to scenes whose brightness
variations do not change appreciably over the time required for the
visual system to assume static behavior. In practice this time is
on the order of several seconds [7,8].

(3) Monochrome displays. The presence of color, hue, and saturation
variations would bring about the necessity of considering a multi-
dimensional MTF of the human visual system with three frequency
variables (for spatial variations of luminance, hue, and saturation)
required to describe the variation of the perceived response along
a single direction. Although some threshold response functions have
been measured [9] for spatial modulation of color, such a multi-
dimensional MIF has not been determined. Therefore, we confine our-
selves here to luminance modulation of a monochrome display.

(4) One-dimensional displays. Although we shall be dealing here primarily
with one-dimensional displays, it is possible to generalize the re-
sults of two-dimensional systems. Our first results along this line
are presented in Section IV. The question of the extent of the
difference between the capabilities of one- and two-dimensional

descriptions is an important matter for future research.

In the sections to follow, we develop the general formulation of the one-
dimensional sampled display system. We then demonstrate how the perceived re-
sponse to such a display may be separated into signal and noise components, the
signal containing the visual information and the noise representing a random
fluctuation about the signal. Next we derive the expressions ftor the two im=-
portant descriptors of the sampled display system = the visual capacity and
the perceived signal-to-noise ratio. The former quantity is the perceptual
analog of the bandwidth of communication theory and is a measure of perceived
sharpness. The latter quantity is a measure of the extent to which the dis-
play noise due to sampling or other sources interferes with the perception of
the visual information. Examples are given of the application of these descrip-
tors to real and hypothetical displays. In the last section we combine the
visual capacity and the perceived signal-to-noise ratio in a unified descriptor
which we call the total information capacity. We demonstrate the use of this

descriptor in optimizing display performance.
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B. GENERAL FORMULATION OF THE ONE-DIMENSIONAL SAMPLING SCENE PROBLEM

In this section, we derive an expression for the perceived intensity
pattern resulting from a particular input scene. This expression will ex-
plicitly contain the viewing distance as well as the various display parameters.
It will form the basis of our subsequent quantitative description of the one-
dimensional sampled display.

To begin, we assume that a particular one-dimensional signal, the input
scene, is applied to the display termirals. Ve 2enote this signal by Io(x),
where x is the coordinate on the display screen. We represent the subsequent

processing of the signal by the following steps:

(1) The input signal Io(x) is first passed through a filter whose
(complex) transfer function is R(w), where w is the angular
spatial frequency as measured on the display screen. The function
R(w) can have any form, subject to the normalization condition
R(0) = 1, the condition for unity amplification of a dc signal.
The filtered signal IF(x) is then given in terms of the Fourier

integral
4o
1p(x) = f £ R(w) I (o) exp (iwx) (1)

where Io(m) is the Fourier spectrum of the input signal Io(x).

(2) The filtered signal IF(x) is then electronically sampled within
Ns equally spaced sampling gates across the display. For a display
width w, the sampling frequency wg is defined as

wg = ZnNs/w (2)

or, alternatively, in terms of the width X, = w/Ns of each sampling

gate,

w, = Zn/xo (3)

*For the sake of simplicity, we assume unity coordinate magnification.
The extension to other magnifications is trivial.
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The sampling process consists of takin® the average of IF(x) within
a fraction s of each sampling gate. That is, the sampled signal In
produced by the n'th sampling gate, whose center is located at

X =nx,, is given by

{n + 8/2)8o
-1
I = (sx) / & 150 @
(n - s/2)xo

We shall refer to the parameter s as the "sampling width." 1In
principle, s can take on any positive value. The value 8 = 0 is
called "delta-function sampling"; only the value of IF(x) at the
center of the sampling gate contributes to In' On the other nand,
values of s greater than unity imply that, in some regions, IF(x)
contributes to more than one of the 13. More elaborate sampling
schemes can be devised and included in the formalism, but the simple
averaging process, Eq. (4), is considered to be representative.

Next the sampled signal is displayed on the screen by multiplying
each In by a "printing function" P(x - nxo) to give the intensity

pattern on the screen:
N

s
I(x) =Z In P(x - nxo) (5)

n=1

The function P(x) is a property of the display. As we shall see,
its particular form will be of great importance in determining
display performance.

The displayed pattern I(x) is perceived by an observer located a
distance r from the screen. The observer is described by an MIF
whose relevant frequency coordinate v is determined at the retina
and is thus measured either in cycles/radian-of-vision (v = wr/2m)
or cycles/degree—of-vision (v = wr/360). The particular MTF 0(v)
used in our calculations is shown in Fig. 5. It combines the
low-frequency results of Davidson with the high-frequency measure-
ments of Campbell and Green [6]. It is valid for high brightness
levels (in excess of 100 ft-L). The MIF O(v) is approximately
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Figure 5. Modulation transfer function 0(v) of the human visual system

as a function of spatial frequency v in cycles/degree-of-vision.
The solid line represents the experimental results of David-
son [6]. The dashed curve represents the approximation [11],

0(v) = (3.637 v/vy) [1 + 3.436 (v/vg) - 4.123 (v/v,)2 +
2,562 (v/vo)3]'1, with v, = 8 cycles/degree-of-vision.

linear in frequency for values of v well below the peak at 8 cycles/

degree-of-vision; at high frequencies, 0(v) varies approximately
2
as 1/v”.

We wish to calculate the intensity pattern oa the screen I(x) in terms of

! the Fourier spectrum of the input signal. First, we combine Eqs. (1) and (4)
to obtain the following experssion for In

4o
| 1 - f g—:- sinc (sw/ws) R(w) io(w) exp (Z"in“/“’s) &

where sinc (y) is the u='al function

sinc (y) = sin(ny)/my 7)
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Next, we insert Eq. (6) into Eq. (5) and express P(x - nxo) as a Fourier in-
i tegral to obtain
i

+oo 4o
| I(x) = f o f 22 P(u) sinc (s0'/u) R@W") I (w")
N
8
x exp (lux) ), exp [2nin(w'-u)/u] (8)
n=1

where P(w) is the Fourier transform of the printing function P(x). 1t the
number of samples Ns is very large, we car evaluate the summation over n in

Eq. (8) by making use of the mathematical identity

4o
Eexp (iny) = 276(y + 2m); m =0, + 1, + 2, . ., . 9

n-—w

where §(y) 18 the Dirac delta-function. Employing Eq. (9), we perform the
integration over w' in Eq. (8) to obtain

+ +o
I(x) = Z %ﬁ- xc-1 P(w) sinc[s(w-mws) /msl R(w-mws)

m==0 "=

x io(m-mws) exp (iux) (10)

At this point, we introduce a normalization constraint on l;(m). Since we will
want to compare displays with equal total light output, we insist that, for a
+ % w

urit dc input, the integrated intensity / dx I(x) = w regardless of the
.2V

form of P(x) Employing Eq. (10), with Io(m) = 276{w), we readily obtain the

condit.ion P(O) =X again valid for N >> 1. Therefore, the factor

X, P(m) in Eq. (10) may be replaced by P(m)/P(O) Instead we choose to re-

normalize P(m) such that




T(w) = x P(w) = P(w)/P(0) (11)

According to step (4) above, the intensity pattern Eq. (10) is transferred
to the perceptual level by means of the MIF of ihe human visual system 0(v).
Since Eq. (10) is in the form of a Fourier integral, the perceived pattern E(x)
is obtained from this equation by simply multiplying* the integrand of Eq. (10)
by the function O(wr/27). Thus, using Eq. (1l1), we have the result for E(x)

+o 4
E(x) = Z f g—go(wr/h) ﬁ(w)sinc[s(w—ms)/wsl
M=o -00

x R(w-m0_) io(m-mms) ) () (12)

Eq. (12) is the major result of this section. It expresses the perceived
pattern in terms of the viewing distance, the various filter functions and
parameters of the display system, and the spectrum of the input scene.

Equation (12) shows that the perceived intensity can be regarded as the
sum of various contributions corresponding to a displacement of the spectral
content of the input scene io(w) by multiples of the sampling frequency. The
situation is shown schematically in Fig. 6, where the contributions of specific
m-values to the total spectral content are plotted as a function of frequency.
Two distinct cases are shown, depending on the relative values of the sampling
frequency wg and the maximum frequency Wy for which the filter function R(w)
is non-zero.

As shown in Fig. 6(a), if wg > sz’ the contributions to the integrand of
Eq. (12) from the various m-values do not overlap in frequency. Such a dis-
play obeys the so-called Nyquist criterion [10], and we call displays of this
type "oversampled'". Suppose now that the MIF of the human visual system couli
be replaced by unity for all frequencies whose magnitude is less than a value

w, such that w, < w, :_(ws - wM). Then, using Eq. (12), it is easy to show

*We neglect any angular factors that arise from such sources as oblique angle
viewing and Lambertian light emission from the display screen. To the extent
that these effects only alter the total brightness of the display, they can
be included in the function I° (w).
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Figure 6. Schematic representation of the spectral content of a sampled
display as a function of spatial frequency: (a) a display that
obeys the Nyquist criterion wg > 2wyq* (b) a display for which

wy < kg < 2wy

that, if we take s = (0 (delta-function sampling), ﬁ(w) = ] (delta-function
printing function), and R(w) = O for le > Wy the function E(x) is identical
to one that is produced by merely sending the input scene through the filter
function R(w) without undergoing the subsequent samplirg process. This result
is equivalent to the well-known Shannon theorem [10] for communication systems
that obey the Nyquist criterion. Of course, the MTF of the human system cannot
be represented by such a simple function. Thus, although the display obeys the
Nyquist criterion, it is not possible to transfer to the perceptual level an
exact replica of the origiral band-limitod signal. However, the Nyquist
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criterion, per se, is irrelevant for the human observer viewing a sampled
display with W > e If we accept the concept of an effective cutoff frequency
e of the human visual system, we can increase the viewing distance until
vc < (ws - wM)r/2u. At such viewing distances, the viewer would be unable to
perceive the difference between the sampled display and an analog display with
an overall band-limited MIF R(w). We are thus led to a theorem appropriate for
sampled displays: For display systems with W > Wy there exists a range of
viewing distances r > vac/(ms - w ) such that, with delta-function sampling
and printing, the display is indistinguishable from an analog display with
the same band-limiting characteristics, viewed at the same distance. (In other
words, we require only one sample per wavelength instead of the customary two
samples per wavelength, as set by the general sampling theorem [10}.) As an
example, we estimate the required viewing distance for a hypothetical display
sampled at the Nyquist rate w, = ZmH. Then, taking* e = 60 cycles/degree-of-
vision = 3440 cycles/radian-of-vision, we have r/w 2 6900/Ns. For 700 samples,
the theorem says that such a display would be indistinguishable from the equiva-
lent analog display at viewing distances greater than about 10 picture widths.
In Fig. 6(b), we indicate the situation for displays that have W < ZmM
and thus do not obey the Nyquist criterion. We call displays of this type
"undersampled"”. As can be seen from the figure, the contributions to the
integrand of Eq. (12) from the various m~values overlap in frequency. There-
fore, according to Shannon [10], it is impossible to reconstruct the original
band—lig}ted signal IF(x) no matter what form of sampling or printing function
is chosen and no matter what form we take for the MIF of the human visual
system. However, according to the theorem sta!' :d above, as long as we > Uy s
we can devise a sampling and printing technique such that an observer can
position himself sufficiently far away for him to be unaware of the difference
between the sampled display and an analog display with an overall MIF R(w).
On the other hand, if W < Wy it is always possible to construct a scene such
that terms in Eq. (12) with m ¥ O can be perceived no matter what the viewing
distance. The condition we < Wy is simply the condition that allows Moiré

beats to be generated at dc.

*This value of Ve corresponds to an acuity of approximately 1 min of angle {13].
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C. SEPARATION OF THE PERCEIVED INTENSITY INTO SIGNAL AND NOISE COMPONENTS

In this section, we employ general arguments regarding the invariance and
statistical properties of E(x) in order to justify the separation of E(x) into
signil and noise components. This separation is essential to the derivation
of the descriptors given later in this report.

As can be seen from Eq. (12), the total perceived response can be written

as the sum of contributions from the various m~values:

4o
E) =), E () (13)

==

where
o g iy
E_(x) = f -g—% O(wr/2m) Ii(w) sinc[s (w-mu ) /u ]
g™
x R(w-m_) Io(w-mws) exp (iwx) (14)
In Eq. (14) we have explicitly included the integratica limits imposed by tbe

finite passband associated with R(w). We now separate the contributions to

E(x) into a signal part Es (x) and a noise part EN(x) according to the following
prescription:

E(x) = Es(x) + EN(x) (15)

where

iy
Es(x) = Eo(x) = f g—: 0(wr/2%) N(w)sinc (sw/ws)
UM

x R(w) io(w) exp (iwx) (16)
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= gty

o
B =Y B0 =Y £ ocwr/2n) 1w
a0 w0 =y

x sinc[s(w-mws)/wsl R(w-mws) io(w-mms) exp (iwx) 17

Now, the question arises as to what extent the quantities Es(x) and EN(x)
truly represent signal and noise contributions, respectively, to the total
perceived pattern. At the outset, one may legitimately argue that true noise
is unpredictable, since it arises from random processes, so that the quantity
defined in Eq. (17), being completely determined by the input spectrum and the
various operations performed by the display, does not represent true noise.
In fact, the quantity EN represents a kind of distortion in which any input
frequency w produces output amplitudes at (w F mws) for all integer values of
m. However, in what follows, we show that, in a statisticel sense, the noise
part EN(x) of the total perceived intensity E(x) is uncorrelsted with the in-
put scene Io(x), and, thus, EN(x) does possess a fundamental property of noise.
THEOREM: If the ensemble of input scenes is translationally itnvariant
(i.e., stationary in a statistical sense) Eu(x) and Io(x) are uncorrelated.

To prove the theorem, we will calculate the quantity <E(x)I°(x)>, where the
bar denotes an average over x, and the bracket symbol stands for an average

over an ensemble of many scenes, TFrom Eq., (12) for E(x), we have

1
Hhv 4 4o 4o
<E(x)I°(x)> = (1/w) -’{1 dx E fg% f %— 0(wr/2w)
- m = =® -0 -0

x ﬁ(w)sinc[s(w-mms)/ws] R(w-mms)

x <io(w-mms) io(w')> expl{i(w + w')x] (18)

In order to obtain the desired result, we must prove the following lemma,
LEMMA: If the ensemble of scenes is translationally invariant,

~ ~ * .

<Io (w)Io (w')> is of the form 2md(w)d(w-w').
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PROOF: We write the autocorrelation function for the ensemble of input scenes

in terms of the spectra of these scenes:

e
. dw! g I (o' !
<I°(X) Io(x*'L)> fzn J o= <I°(w) Io(w )> !

x exp[i(w + w'")x + iw'L]

oo o0
"R -~ %
[o [ amie
x exp’i(uw-w')x - iw'L] (19)

wirere we have used the relation Io(w) = Io(-w), a consequence of the reality
of Io(x). From Eq. (19), it is seen that, for an arbitrary Io(w), the only

way the autocorrelation function can be independent of x is for
~ A*
<I°(w) I° (w')> = 27 ¢(w)d(w'=w) (20)

where ¢(w) 1s a real function, the power spectrum of the ensemble of scenes.
Thus, the lemma is proved, and Eq. (19) reduces to the Wiener-Khinchin
theorem {[1]; i.e., the autocorrelation function is the Fourier transform of

the power spectrum.
Returning now to Eq. (18), use of the lemma gives rise to

+

2 w 4 +
E@I_@> = (1/w) f dx Z %% 0(ur/27) T(w)
1 p=—o  Jew
"i‘ w

x sinc[s(m-ms) /wsl R(m-ms)

x Q(w-mws) exp(immsx) (2D
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For a very large display, the integration over x gives a contribution only
from the term m = 0, since all terms with m¥0 are pure oscillatory in x and

average to zero. We thus have the desired result

<E(x)I (x)> = <Eg(x) I (x)>
<Ey ()1 (x)> = 0 (22)

where Es(x) and EN(x) are the signal and noise contributions, vespectively,
as defined in Eqs. (16) and (17).

Ihe above theorem shows that, on the average, EN(x) does not contribute
to the correlation function <E(x)Io(x)>. This means that we may regard E(x)
as consisting of a correlated part Es(x) plus a fluctuating part EN(x), where
the average vaiue of the fluctuation about Es(x) vanishcs. Thus, even though
EN(x) is not the product of the kind of random process we ncrmally associate
j with noise, it does display the fundamental property of noice of being un-
‘ correlated with the input. Simply put, this means that if we look at a

particular place on a display screen on which an arbitrary scene has been

| produced, there is no reason to expect that noise will either add to or sub-

tract from the perceived signal. The expectation value of the product of the

! input signal and the perceived noise for an arbitrary input scene should

vanish. Indeed, Eq. (22) shows that the separation E(x) = {Es(x) + EN(x)],

where Es(x) and EN(x) are given in Eqs. (16) and (17), satisfies this criterionm.
Furthermore, we can show that Es(x) and EN(x) have significantly dif-

ferent invariance properties under an arbitrary tramslation of the input image.

Consider a displacement 6x of the input scene. From the form of Es(x) given

in Eq. (16}, it is obvious that Es(x) can be regarded as being generated by an

effective display MIF Reff(m) such that

Reff(w) = ﬁ(m) sinc(sm/ms) R(w) (23)

: Thus, 1if Io(x) +> Io(x + 6x), we must have Es(x) + Es(x + 6x); we obtain the
same sigral but shifted by the same distance as was the input. However, from
the forT of EN(x) given in Eq. (17), it is easy to show that, for arbitrary
éx and Io(w), none of the Em(x) comprising EN(x) transforms to Em(x + 6x).

T T
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Indeed, we find that, under the translation Io(x) > Io(x+6x),

Em(x) + Em(x+6x)exp(imws6x). Thus, EN(x) is, in general, altered in a compli-
cated way by the tranmslation. If EN(x) arose from random processes not
associated with the scene content itself, we would not expect EN(x) to depend
on the "phase" of the input signal. Nevertheless, a fundamental, property of
any communication system is that, for an arbitrary displacement of the input
stimulus, the output message should also translate uniformly to give the same
signal but displaced by the same amount as the input. No distortions of the
signal should be introduced by a decision to send a messagc earlier or later
than was originally intended. The quantity Es(x), defined in Eq. (16), does
indeed meet this requirement, whereas EN(x), defired in Eq. (17), does not
display this translational invariance.

The above properties of Es(x) and EN(x) show that our method of separating
the perceived intensity into signal and noise components is justified. The
quant ity Es(x) is correlated with the input scene. It has the same translation
properties as the input scene, and so it can be described by an effective MIF,
given in Eq. (23). The quantity EN(x) is uncorrelated with the input. It
ity

but rather gives rise to a random error that depends on the input scene, its

does not respond to translations of the input scene in the same way as E

phase with respect to the sampling locations, and the parameters of the

sampling process.

D. TWO DESCRIPTORS: THE VISUAL CAPACITY AND THE PERCEIVED

SIGNAL-TO-NOISE RATIO

With the formalism developed in the preceding sections, we are in a
position to calculate two fundamental descriptors for the one-dimensional
sampled display. In the spirit of our treatment of the display-observer system
as a linear communication channel, it is natural to consider quantities that
are analogous to the well-known quality descriptors for such systems: band-
width and signal-to-noise ratio. In the discussion below, we develop the ex-
pressions for the perceptual analog of thece important quantities. The quantity
analogous to the bandwidth is the visual capacity, a measure of edge dis-~
crimination ability in the absence of noise. The perceived signal-to-noise
ratio is a determination of the relative amount of signal transmitted to the

perceptual level compared with the corresponding noise.
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1. The Visual Capacity

R ——

In Ref. [11], two of the authors of this report developed a descriptor
that 1s a direct measure of the number of fully resolvable edge transitions
that can be perceived across a noiseless, analog display of width w. This
descriptor, called the total visual capécity and denoted by Cs, is computed
from the perceived width X, of an edge transition according to the relation [11]

Cz = w/xe (24)

The edge width X, in turn, is computed from the integral of the square of the
magnitude of the overall MIF of the display-observer system [11]

1/xe = (1/7) f dw Oz(wr/21r) |R°(‘”)|2 (25)
0

Here Ro(m) represents the overall MIF of the display system, including band
limitations of the input as well as the limitations of the display device it-
self. Combining Eqs. (24) and (25), we have, making the dependence of 03 on
viewing distance explicit,

¢ty = wim f dw Pur/2n) |R ()| (26)
0 Analog Displays

As discussed in Ref. [11], Cs can be regarded as the information capacity cf a
noiseless two~ievel communication channel. It is also a generalization to the
perceptual level of the noise equivalent bandwidth that was proposed by O. H.
Schade [2] as an image quality descriptor. Schade argued that the specifica-
tion of the limiting resolution alone is inadequate as a descriptor. Instead,

the noise equivalent bandwidth, which weights a given frequency according to

the square of the MIF at that frequency, provides a better overall quantitative
j measure of the effective bandwidth of the system. The authors of Ref. [11]
showed that, when generalized to the perceptual level, the noise equivalent

bandwidth is actually a measure of perceived edge sharpness.
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The usefulness of the visual capacity has been demonstrated [11] in the
prediction of such quantities as the optimum viewing distance end the relative
performance of various display systems at any viewing distance, all within the
restriction that we confine ourselves to roiseless analog systems. In order
to extend Eq. (26) to the case of sampled displays, we first recall that,
according to the discussion of the previous section, the perceived response to
a scene imaged on a sampled display may be regarded as the sum of the signal
and noise contributions. The signal contribution is described by an effective
MTF Reff(w) for sampled displays, given in Eq. (23), while the noise contribu-
tion is uncorrelated with the ensemble of input scenes. Therefore, the visual
capacity for sampled displays is obtained from Eq. (26} by substituting Reff(w)
for the overall MIF Ro(w) of the analog display

Cz(r) = (w/m) .’P dw Oz(wr/Zn) |ﬁ(w)|2 sincz(sw/ws)lR(w)I2 (27)
) Sampled Displays

It should be emphasized that Eq. (27) for CE is a measure of edge discrimina-
tion ability, ignoring the effect of the sampling noise EN(x). As such, it
represents the effective bandwidth of the display-observer communication
system. In our formulation, the deleterious effect of the noise is not in-
cluded in this bandwidth but rather is included in the perceived signal-to-

noise ratio, to be discussed later.

a. Properties of the Visual Capacity. - The general properties of Cz for
analog display systems have been discussed in Ref. [11]. We note here that,
for the case R(w) = Ro(w), a comparison of Eqs. (26) and (27) for the Cs of
analog and sampled display systems, respectively, shows that sampling always
degrades the perceived sharpness of the equivalent analog display. This ob-
servation follows immediately from the fact that both ]ﬁ(w)l and sinc(sw/ws)
are always less than or equal to unity [12]. It is clear that the visual
capacity of a sampled display is increased by raising the sampling frequency,
or, alternatively, by employing a very small sampling width s and a very narrow
printing function P(x). Indeed in the limit of delta-function sampling s = 0
and delta-function printing ﬁ(w) = ], we recover the visual capacity of an

equivalent analog display with a band-limited input characteristic R(w) and a
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perfect writing beam. This conclusion may appear to be somewhat surprising
since it does not contain an explicit statement about the value of Ns; the
only requirement is that s = p = 0. There is, in fact, an implicit require-
ment that Ns >> 1, because our formalism is based on the assumption that the
number of samples is sufficiently large to allow the replacement of the summa-
tion over the finite number of sampling cells by an infinite sum [see Egs.
(8) and (9)). Furthermore, it is important to keep in mind that the sampled
image can be separated into a signal and a sampling noise component only in
a statistical sense, and that this separation is essential for the definition
of Reff(m) and, therefore, for the calculation of Cz. The reader should grasp
the essential difference between Reff(m) and the MIF of an ordinary analog
display. In the case of an analog display, the reproduced contrast ratio tor
any given sinusoidal input of frequency w is explicitly specified by the modula-
tion transfer function R(w); in the general sampled display case, Reff(w) by
itself does not specify the reproduced contrast because the displayed signal
is always accompanied by the sampling noise. However, as shown in Section
1I11.C, Reff(m) does indeed give the average response of the display, so that
Eq. (27) for Cv represents the number of perceivable edges after suitable
averaging cancels the sampling noise., The effect of the noise will be included
separately in the calculation of the perceived signal-to-noise ratio. We shall
see later that, whereas decreasing the sampling width and the width of the
printing function improves the visual capacity, such a practice degrades the
perceived signal-to-noise ratio. The optimum strategy can only be determined
by considering both visual capacity and perceived signal-to-noise ratio.

The asymptotic behavior of C$ at very small and very large viewing dis-
tances can be obtained by extending the technique employed in Ref. [11]. Each
of the four functions appearing in the integrand of Eq. (27) have a charac-

teristic range in w~space. These ranges are:

Range of O(wr/2m) ~ vaolr
Range of |R(w)| ~ Wy
Range of sinc (sm/ms) N ms/s

Range of |ﬁ(m)| " ms/p.
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Here Vo is the retinal frequency for which O(v) has a maximum; from Fig. 5, it
is seen that v = 8 cycles/degree-~of-vis.on = 458 cycles/radian-of-vision. The
quantity p defines the effective dimensionless width of the printing function
P(x); i.e., the quantity PX, is the range of P(x).

The far-field viewing distance limit of Cs(r) is obtained for such large
values of r that the range of O(wr/27) is much less than those of the other
three functions appearing in the integrand of Eq. (27). In that case, R(w),
ﬁ(w), and sinc(sw/ws) may be replaced by unity in Eq. (27) to give

Cz(r) - w/6%r (28)
where
1/67 = 2 f dv 0%(v) (29)
0

is the perceived angular width of a single edge transition, as reproduced by

a perfect display. As discussed in Ref. [11], we have adopted a scale for 0(v)
that gives a maximuin value of the total visual capacity equal to the number of
TV lines NTV = wMy/n that can be produced by an analog display with a flat re-
sponse R(w) = 1 below the maximum frequency Wye This procedure establishes
the value [11]

0: = 1.84 min of angle (30)

for the perceived angular width of a perfect edge. This value lies within the
range found in early measurements of visual acuity on line patierms [13'. How-
ever, the numerical value of 6: given here has no fundamental perceptual signif-
icance; it is used only to establish a convenient absolute scale for Cz that
allows easy appreciation of any visual capacity value in terms of a corresponding
ideal TV system. Combining Egs. (29) and (30) gives the following simple law

for the visual capacity at very large viewing distances:

Cz(r) = 1870 w/r; for r/21w° >> 1/wM, p/ws, s/ws (31)
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In the limit of very small viewing distances such that the range of the i
integrand of Eq. (27) is not affected by the high-frequency rolloff ~f O(wr/2w),
the function O(wr/27) can be replaced by its low-frequency, linear

asymptote [11]

Lim O(v) = 3.637 v/v
v+0 (52)

We have then

cT(r) = 4.21 w(r/2my )2 f do w? |F |2 sinc’(sw/u) [RG)|%; (33)

0
for r/21rvo << Largest of 1/wM, p/ws, s/ws

From Eq. (33) it is seen that, in near-field viewing, Cs(r) increases as the
square of the viewing distance, with the magnitude determined by the second
moment of the effective display MIF. The occurrence of the second moment
emphasizes the high-frequency response of the display system. This result
can be understood by considering that, when we view an image from such small
distances that all spatial frequencies produced by the display lie below the
peak in the response of the human visual system, we would be quite capable of
perceiving detail that is, in fact, not being produced by the display. In this
case, visual capacity is increased either by increasing the high-frequency
response of the display or by moving further away so as to bring the peak of
the response of the human visual system within the effective passband of the
display.

Since C (r) rises as r2 for small viewing distances and falls off as 1/r
at large viewing distances, C (r) must achieve a maximum value at some inter-
mediate viewing distance. One anticipates that the maximum value of C (r) is
achieved at the viewing distance for which the peak of the MIF of the human
visual system corresponds approximately to the rolloff frequency of the effec-
tive display MIF R

e
capacity should occur at a viewing distance rp such that

ff(w). Thus, we expect that the peak value of the visual
rp/21rvo ~ Largest of 1/wM, p/ws, s/o-s (34)
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Eq. (34) simply says that the viewing distance for maximum Cz(r) is determined
by matching the peak of the eye's sensitivity curve to the effective bandwidth
of the display.

b. Calculated Examples. - An example of the degradation of the visual capacity
due to sampling is shown in Fig. 7. The curves shown in the figure were calcu-
lated from Eq. (27) for hypothetical sampled displays with the indicated values
of the number of samples Ns and with a flat pre-sampling filter function

R(w) = 1 up to the maximum (cutoff) frequency Wy e The value of wy was chosen
to give a limiting resolution of Ny = me/n = 500 lines. We have taken full-
width sampling 8 = 1 and a printing function that corresponds to constant
illumination of each sampling aperture. Thus, we have P(x) = 1 for |x| < %

and P(x) = 0 for |x| > i x , giving H(w) = sinc (w/w ). The curve labeled

"N = o" corresponds to the 500-1ine analog system, so that C (r) has a maximum
value of 500 transitions, as it should. As N is decreased, C (r) decreases at
all viewing distances, and rp is shifted to higher values from its value of
about 2.7 picture widths for the analog limit. The calculated drop of the
visual capacity is gradual at first but becomes severe for Ns x 1000. We

notice that, since
NTV/Ns = ZNM/ws (35)

when NS has been reduced to 500 samples, the display is being sampled at pre-
cisely the Nyquist rate w, = ZwM. At this point, the peak visual capacity is
equivalent to only a 280-line analog display, and rp has been shifted to about
3.7 picture widths. Further reductions of Ns would cause an even greater
degradation of C (r)

In Fig. 8, we have used Egs. (26) and (27) to compare C (r) for the
horizontal and vertical directions of a real television display device consist-
ing of a wide-anglz, small-screen color kinescope. This is of particular in-
terest because this display is a hybrid system; the image-forming capability in
the horizontal direction is that of an analog scanning display, whereas the
image-forming method in the vertical direction is that of a sampled display.

*
In the calculations, we used a measured kinescope MIF for a single electron

*E, M. Herold, private communication.
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Figure 8. Visual capacity CT as a function of viewing distance in picturec
heights for a real television display device. The cT for both
vertical and horizontal directions are shown. An Ng = 640-line
format has been employed for the vertical direction in order to
compensate for the 4:3 aspect ratio of the display screen.

gun in order to obtain the effective MIF's for the horizontal aud vertical
directions. The beam current level in the kinescope at which the MIF's were
determined corresponds to approximately 100-ft-L brightness. The contribution
to R (w) of the video response function limiting the range of frequencies
available for the horizontal signals was taken from typical measured circuit
characteristics. For the vertical direction, we assumed extreme undersampling
and, therefore, took wy = o, In addition, we used the value s = 1, corresponding
to full-width sampling. In order to effect a direct comparison of the hori-
zontal and vertical C (r), we compensated for the 4:3 aspect ratio of the
display screen by computing C (r) for the vertical direction using a 640-sample
format rather than the actual number, 480 samples, contained in one picture

height. Hcwever, the viewing distance coordinate is measured in picture

*J, R, van Raalte and W. G. Gibson, private communication.
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heights h, as is customary in the television industry. In performing the cal-
culations, we assumed an isotropic O(v), a reasonably good approximation, as
shown elsewhere in this report. It is seen from Fig. 8 that the sharpness
capability of the horizontal and vertical directions are only fairly well
matched in this case. The peak visual capacity for the horizontal direction
is about 18% less than that for the vertical direction, and this peak occurs
at a considerably larger viewing distance, about 7h compared with 4.7h for the
vertical direction. The major cause of the calculated anisotropy is the in-
complete utilization of the bandwidth available for the transmission of
luminance signals for horizontal display.

In Fig. 9, we illustrate the effect of varying the width of the printing
function on the Cz(r) for the vertical (sampled) direction of the television
display described above. Here we use a 480-sample format to compute the actual
visual capacity for the display of height h. The parameter p represents the
effective width ¢: the printing function. In this case, P(x) was approximately
Gaussian, and we have defined p as the distance, in units of X s at which the
printing function falls to 1l/e of its maximum value. The particular value
p = 0.642 was the value observed experimentally, #nd the other values of p for
which curves are shown represent successive incremental changes of about 207
from the experimental value. It is seen that, by increasing p, we degrade the
visual capacity and increase rp, whereas the visual capacity is enhanced and
r moves to smaller values as p is decreased from the experimental value.

This behavior is an example of the general observation that narrow width
printing and sampling functions always enhance Cz(r). In the limit p »> O,

we calculate that the maximum value of Cz(r) = 375 transitions at a viewing
distance rp/h = 2,7. This result shows that an s = 1 sampled display system
with Ns samples operating in the extreme undersampled limit has a maximum
edge discrimination ability equivalent to an analog display with a flat pass-
band and limiting resolution given by N, = (375/480) NS = 0.78Ns.

e. The Perceived Gradient Content and its Relation to the Visual Capactity. -
Before proceeding to a discussion of the perceived signal-to-noise ratio, we
present an important theorem relating the visual capacity to a statistical
quantity that is representative of the information content of actual observed

scenes. We define the quantity G according to the formula,
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Figure 9. Visual capacity cI as a function of viewing distance in picture
heights for the vertical direction (Ng = 480) of a television
display. The values of the parameter p, which represents the
effective width of the Gaussian printing function, are given
in the figure. The particular value obtained from measurements
of a commercially available kinescope is indicated.

<(dEg(0) /a0 %>
(36)

GC=
<1§(x)>

Thus, G is the square of the gradient of the perceived signal response, averaged
over the ensemble of scenes and normalized with respect to brightness. We call
G the perceived gradient content of the ensemble of scenes. Its physical
meaning can be grasped by considering the fact that visual information is con-
tained only in regions where the perceived brightness varies with distance on
the display screen (e.g., edges, boundaries, etc.). We can view G as the
average inverse square of the distance required for a perceived transition.
Thus, the gradient content may be regarded as a measure of the information
density of the displayed scenes. The theorem we wish to prove is that, for

the observed power spectrum of the ensemble of scenes ¢(w) = llwz,
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G = (20 /%) C (37)

where wr is an effective lower cutoff frequency of ¢(w). Equation (37) states
that, at any viewing distance, the edge discrimination ability of the observer
is proportional to the statistical average of a quantity that is representative
of the perceived information content of the observed scenes. The importance
of this result is that it relates Cz, which describes the system capability,
to an actual response G that describes the average perceived content of the
displayed scenes.

To prove Eq. (37), we first write the expression for <(dEs(x)/dx)2>,
using Eq. (16) for Es(x) and Eq. (23) for Reff(w)

=W

4w +w
M M
<(dEs(x)/dx)2> -f g—““i f -g% 0(wr/2m) 0(w'r/2m)
M ~Uy

x Roee(w) R (u') <io(w) io(w') > (iw) (1w')

x exp [1(w + w')x] (38)

Next we empluy Eq. (20)-to relate the quantity within the bracket to the power

*
spectrum $(w). This permits a trivial integration over w'. We have then

M
2 2 2 2
<(dEg(x)/dx)“> = (1/m) dw 0 (wr/2m) lneff(w)l we () (39)
0
In Section II we reported that the power spectrum of random scenes has the
form
2 >
d(w) = B/w ; lwlN wp (40)

P *
*We make use of the identity Rgee(w)=Rgsg(-w), a consequence of the reality of
E(x), to change the integral over all w to one over only positive frequencies.
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Here u s the effective lower cutoff frequency, corresponds to a spatial wave~

length of roughly one picture width, so that w = 2n/w. The exact value of w

L
must be determined from the extreme low-frequency behavior of ¢(w), as dis-

L

cussed in Section II. If w is much smaller than the frequency range of the
integrend of Eq. (39)*, we can safely ignore the contribution to the integral
from the frequency interval |w| < 6y« Combining Egs. (39) and (40), and employ-
ing Eq. (27) for Cs, we have

<(@Bg () /ax)?> = (B/) CT (41)

We can express the power amplitude factor B in terms of the ensemble average
input power <102(x)>. The same procedure that was used above to calculate
<(dES(x)/dx)2> can be employed to express <I§(x)> in terms of ®(w). We
obtain

(-]

<I§(x)> = (1/7) / dw o (w) (42a)

0
= (B/ZwL) (42b)

where, in proceeding from Eq. (42a) to Eq. (42b), we have employed a simple
Lorentzian, ¢(w)=B[w2+wL2]-1, to describe the low-frequency behavior of ¢(w).
Equations (40) and (42) may be regarded as constituting a precise definition
of w . Combining Eqs. (41) and (42b) immediately gives us the desired result,
Eq. (37), with the gradient content G defined in Eq. (36).

Finally, we note that, since w = 2r/w, Eq. (37) can be carried one step

further to give the approximate result

w2 G = 41 C;r, (43)

*With respect to R ¢e(w), this condition is automatically satisfied for

NS >> 1 and Nqy >> i. This condition, when applied to O(wr/2w), implies that
wpr/2T << Vgs OF r/w << 500. 7Thus, we must confine ourselves to sufficiently
small viewing distances for the peak of the eye's sensitivity curve to lie
well above a frequency corresponding to one cycle/picture width. In practice
this is the only interesting case.

54




RS A AR

T I O

I

The quantity on the left-hand side of Eq. (43) represents the mean square

number of transitions perceived across the display by an observer at a particu-
lar viewing distance. This follows from the view of the quantity G as the
average inverse square length required for a perceived transition. The quantity
on the right-hand side represents, aside from the factor 4w, the number of
perceivable edge transitions that the display-observer system is capable of
producing. We emphasize the statistical relationship contained in Eq. (43) by
rewriting the left-hand side in terms of Nrms’ the statistically meaningful

root mean square aumber of perceived edges associated with an arbitrary set

of random natural scenes. From tiie above discussion, we have

N__=w cl/2 (44)

in which case Eq. (43) becomes

_ T,1/2
Nrms =2 (m Cv) (45)

The square root relationship between the root mean square number of perceived
transitions and the maximum number that can be perceived is a direct consequence

of the measured 1/w2 power spectrum,

2. The Perceived Signal-to-Noise Racio

In Section III.C, we showed how the perceived response E(x) can be separated
into the signal contribution Es(x), given by Eq. (16), and a sampling noise '
contribution EN(x), given by Eq. (17). It was proved that, after averaging over
the ensemble of scenes and over position on the display screen, the product
EN(x) Io(x) vanishes, thereby showing that EN(x) is uncorrelated with the
ensemble of input scenes. We can obtain a measure of the deleterious effect
of the sampling noise by computing the signal-to-noise ratio at the perceptual
level S/N. To do so we shall compute the mean square perceived signal "power"
S2 and the mean square perceived noise "power" NZ. Here, the term "power"
refers to the square of the brightness; in this formulation, brightness is the

analog of the current or the voltage of electrical communication theory.
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We begin by writing the expression for the total perceived structural
content <EZ(x)>. Using Eq. (13) to express <EZ(x)> in terms of the contribu-
tions from the Em(x), defined in Eq. (14), we have

<E2(x)> - Z z: <Em(x)En(x)> (46)

m—® M=o

By making use of the technique employed in proving the theorem of Section I1II.C,
it 1s a simple matter to show that only the terms m = n contribute to the
summations in Eq. (46). We readily find

<E2(x)> = S2 + N2 (47)
where

oy
s? = <2 (0> = J’ 2 o*(ur/2m |fi(w |2
~uy
x sinc (sw/w) |R(m)|2 d(w) (48)

N = <gy’Go> = Z f ‘% of(wr/2m) |fi(w)|?

w0 s wM

x sinc’[8(w - w)/o ) [Rw - m) o - ) (49)

We find it convenient to rewrite Eqs. (48) and (49), using Eq. (23) for the
effective display MTF Reff(w). Making the dependence of S2 and N2 on viewing
distance explicit, we have

*The equations for 52 and N2 do not contain factors arising from angular
dispersion of the light emitted from the disglay screen. We assume that
such factors are identical for both $2 and N , 80 that they do not appear
in the ratio S/N.
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s2(r) .f o 0% (wr/2m) IReff(w)lz #(w) (50)
<0
Nz(r) = f -cz-i-‘-:- Oz(mr/21r) IReff(m)!2 N(w) (51)

Here N(w) is the effective noise power spectrum, given by

+o 2 2
= sinc” [s(w - mw )/w ] IR(w - mw )I
Nw) = ) > S 0w - mu) (52)
sinc” (sw/w_) |R(w)]|
mh0 s

Sampling Noise

Equations (50) and (51) are quite general. If, instead of sampling noise, we
consider a noise power spectrum arising from other random noise sources as-
sociated with the transmission of the video signal, Eq. (51) still applies, if
we use the proper form for N(w). A physically interesting case is that of
white noise [constant N(w)], for which we write

NZ

N{w) = o 3 s White Noise (53)

dw . 2
[ 2_:! IReff(m) ‘

Here NS2 is the mean square noise fluctuation, as measured on the display
screen (obtained from Eq. (51) by setting O(wr/2m) = 1), and the quantity in
the denominator is the noise equivalent bandwidth.

a. Properties of the Perceived Signal-to-Noise Ratio. - Equations (50) to (52)
constitute the results for the signal-to-noise ratio for the one dimensional
sampled display problem. To calculate the perceived signal-to-noise ratio,

the integrals of Eqs. (50) and (51) must be evaluated and the ratio S/N formed.
We note first that S/N is, in general, an explicit function of viewing dis-
tance. This arises from the fact that the noise power spectrum and the signal
power spectrum are different functions of w, so that the human visual system

acts on these spectra differently at different viewing distances. Indeed, the
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the measured $(w) = B/m2 implies that, if N(w) falls off more slowly than 1/m2
at low frequencies, S(r)/N(r) diverges at very large viewing distances. Al-
though it 1s possible to conceive of pathological noise spectra that would give
unusual behavior as r increases from zero, we find that S(r)/N(r) normally in-
creases monotonically with r. This is in agreement with common experience;
when confronted with a noisy picture, we improve the perceived signal-to-noise
ratio by moving away from the picture. By moving away, we use the MTF of the
visual system to filter out the high-frequency noise components. This action
is effective because, whereas the high-frequency part of the signal spectrum
rolls off as llmz, the noise spectrum normally rolls off more slowly or even
increases with frequency.

An example of the behavior of S(r)/N(r) as a function of viewing distance
is shown in Fig. 10 where the perceived signal~to-noise ratio is plotted for
the vertical samples of the real teclevision display described above in the
discussion of the visual capacity and for which Cz(r) is graphed in Fig. 8.

It is seen from the figure that S(r)/N(r) increases monotonically from a value
near unity at r = 0. The sharper rise after the knee in the curve near r/h =1
is due to the retinal frequency wsr/2n passing through the peak of the eye's
sensitivity curve at Vor Since much of the noise spectrum is concentrated near
w = me [see Eq. (52)], the perceived noise power falls off drastically for
wsr/2n>vo, and S(r)/N(r) increases rapidly. We find that, for large viewing
distances, r/h 2 8, S(r)/N(r) rises approximately as (r/h)z. At the viewing
distance rp/h = 4,7 for which the visual capacity of the display has a maximum
value (see Fig. 8), the value of S/N is approximately 21. We have used Eq.
(53) for the power spectrum of white electronic noise to obtain an estimate

of the perceived signal-to-noise ratio for the horizontal (analog) direction
of the television display. This analysis indicates that, for high-quality

(43 dB), commercial television pictures viewed at r/h = 5, S/N for the hori-
zontal direction is also approximately 20.

From these results, it appears that the horizontal and vertical directions
of the television display are well matched in terms of perceived signal-to-
noise ratio; the sampling noise and analog picture noise are approximately
equal. We also conclude that the value S/N = 20 is representative of what
observers consider to be high-quality picture rendition. This value is con-

sistent with the Weber-Fechner law, which indicates that intensity variations
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Figure 10. Perceived signal-to-noise ratio S/N as a function of viewing
distance in picture heights for the vertical (sampled) di-
rection of a real television display device., The C$ for
this display is given in Fig. 8.

of approximately [14] 1% to 14% are perceivable, depending on the experimental

conditions.

b. Asymptotic Expressions for S(r)/N(r). - Using Egqs. (50) to (52), we are able
to obtain approximate analytic expressions for the asymptotic behavior of
S(r)/N(r) at very large and very small viewing distances. Such expressions are
very valuable because they help us to identify how S(r)/N(r) depends on the
various display parameters as well as the viewing distance. In the following
development, we illustrate the technique employed to calculate asymptotic
expressions for S(r)/N(r) by considering a special case corresponding to a

constant printing function that extends over the entire sampling location;

that is,
P(x) = 1; for |x| <1 X
i -2
= 0; for lxl > % X,
M(w) = sinc (uw/w,) (54)
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We shall then present, without derivation, the results for Gaussian printing
functions. The case ﬁ(m) = sinc (m/ms) is of special interest because it
represents the simplest printing function for the optical bliock processor
described elsewhere in this report. It has also been used extensively in
the computer generation [4] of sampled images.

In calculating the asymptotic behavior of S(r)/N(r), we consider viewing
distances much larger than the distance rp for maximum Cz, given approximately
by Eq. (34). However, we shall restrict ourselves to sufficiently small
viewing distances in order for the peak of the eye's sensitivity curve at v = v
to lie well above tne retinal frequency er/ZW 2 r/w. Under these conditions,
in Eq. (50) for S (r) we can replace R f(m) by unity and substitute for ¢(w)
the measured signal power spectrum B/m . After transforming the integration

variable to the retinal frequency coordinate v = wr/2m, Eq. (50) becomes
Sz(r) = (Br/21r2) / dv v-z 02(\));
0
for ¢(w) = B/uw“, rp <r<<vw (55)

The integral is finite since O(v) « v as v > 0 [see Fig. 5 and Eq. (32)].
Equation (55) is remarkable in itself, for it shows that, aside from factors
arising from angular dispersion of the light emitted from the display screen,
the perceived signal power becomes larger as we increase the viewing distance.
This result is a simple consequence of the concentration of the signal power

of natural scenes at low frequencies. As r increases, the peak of the MIF of
the visual system at v = Yo corresponds to lower and lower frequencies as
measured on the display screen, thereby permitting more efficient overall trans-
mission of the signal power. We note that if the power spectrum of natural

scenes were white, Eq. (50) would give us

Lim

r>e

s2(r) = C/G):r; for ¢(w) = C (56)

Here 9: is the perceived angular width of an edge transition, given by Eq. (29).
In this case, the perceived signal decreases with r.

Turning now to Eqs. (51) and (52) for the noise power N (r), substitution
of d(w) = B/m and using Eq. (54) for H(m) and Eq. (23) for R f(w) gives us
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s sinc2 (w/w )
Nz(r) = B Z / 0 (wr/21r)|R(w-mw )|2 -_-Z-S—

(w - mws)
x sinc2 [s(w ~ mms)/ws] (57)

In Eq. (57), it was not necessary to employ the lower cutoff frequency wp of
the 1/w2 power spectrum. This is because the quantity [sinc (w/w )]/(w-mm )
is finite at w = mw_; no singularity problem arises from the extension of the
argument of ¢(w) to zero. This procedure gives negligible error, since W is
much less than the range of the various functions in the integrand of Eq. (57).
However, this procedure is possible only fo: the particular functions

ﬁ(w) = sinc(nw/ws) with n = integer, since they are the only functions [10]
that (1) are the Fourier transforms of real positive functions and (2) have
zeroes at w = mw . For all other functions ﬁ(w), the lower cutoff frequency
must be explicitly employed to prevent singular behavior at w = nw_ . The
physical basis for this result lies in the fact that the printing functions
corresponding to ﬁ(w) = ginc (nw/ws) completely and uniformly illuminate n
sampling locations. This confines the perceived noise to the vicinity of the
edge transitions that give rise to the I/w2 power spectrum. The average noise
is then independent of the display width and, therefore, also independent of

w All other printing functions produce "ripple" fluctuations across the

display screen, so that the perceived noise power arising from these fluctua-
tions depends explicitly on Ty

We can simplify Eq. (57) by changing the sum over all integers m to one
over only positive integers. This is readily accomplished by using the fact
that each of the functions appearing in the integrand are even with respect to
a sign change of their arguments. Next, for the sake of simplicity, we use

R(w) = 1. Then, Eq. (57) becomes

mm+w

- sinc (w/w )
Nz(r) = (B/m) 2 f dw 0% (wr/271) ———— sinczls(w-ms)/ws] (58)

m=1

(w-mm )
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In general, Eq. (58) must be evaluated numerically. However, for displays
operating in the extreme oversampled or in the undersampled limit, we can
obtain approximate expressions for Nz(r).

In the extreme oversampled limit Wy >> Wy, it is seen from Eq. (58) that
the noise spectrum consists of the sum of narrow-~band noise contributions,
each of width ZmH, centered about multiples of the sampling frequency mo_. In
that case, the integrand of Eq. (58) may be replaced by its value at w = m_.
The integration is then trivial, and we are left with

2 2 2 2,
N°(x) = (ZBwM/nws ) :E: 0 (mmsr/Zn)/m ; for Wy << w (59)
mw=1
Next, for large viewing distances such that r/2nv° >> llws, we can replace the
MIF of the human visual system by its high-frequency, inverse-square rolloff

characteristic [11]

o(v) = 1.42 (vo/v)z; for v >> v_ (60)

Employing Eq. (60) in Eq. (59), and making use of the mathematical identity [15]

(1/m6) = n6/945, we obtain our result for the perceived noise power at
m=1

large viewing distances for the oversampled limit

Nz(r) = 1.318B (wM/wsz) (2nv0/wsr)4;

for o(w) = B/wz, W

- << wes rp <<r << vw (61)

Using Eqs. (55) and (61) for Sz(r) and Nz(r), respectively, we obtain, for the

perceived signal-to-noise ratio,

S /N = 3.38 x 07 @ 3L @/
for ¢(w) = B/wz, Ny << N T, S Vo ¥ (62)
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To obtain Eq. (62), we have employed the value calculated from the measured
o(v) (Fig. 5),

f dv v2 08(v) = 4731y, (63)
0

and have used Eqs. (2) and (35) to express we and Wy in terms of the number of
samples Ns and number of TV lines NTV’ respectively.

In the undersampled limit wg < Wy the lower limits of the integrals of
Eq. (58) extend down to dc provided m < Mod (wM/ms), where Mod(x) stands for
the "greatest integer in x". Then, for sufficiently large viewing distances
such that the inequality r/2ﬂv >> llm is satisfied, the major contribution
to N (r) arises from m-values up to and including m = Mod(mM/m ). The contribu-
tions for m > Mod(mM/ms) are assumed to lie sufficiently far above the peak of
the eye's sensitivity curve at v = Vo for them to be neglected. Of course, the
discontinuity in allowed m-values when wM/ms = integer 1is not strictly correct.
In practice a continuous transition occurs due to the fact that the viewing
distance is not formally infinite. The situation for the undersampled display
is to be compared with that for the oversampled display, where the only noise
contlibutions were centered in narrow bands around w = mms, and, therefore, are
perceived with far less subjective intensity at large viewing distances. In
the undersampled case, the ability of the display to fold high frequencies down
to dc generates, on the average, perceivable noise well within the effective
passband of the human visual system even at large viewing distances. With

these considerations, we approximate Eq. (58) for Nz(r) as follows:

oo
Nz(r) = (B/mnsz) f dw Oz(mr/21r) Fs(m, mM/ws);

for w, >w , r << I << v W (64)
M s’ p o
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where

i Mod (uy,/w )
% Fs(w,mM/ws) = (m/ws)2 ]E: 1/m4; for s = integer (65a)
m=1
Mod(wM/ms)
= :E: [sincz(ms)]/mz; for s # integer (65b)

m=1

In arriving at Eqs. (64) and (65) from Eq. (58), we have: (1) replaced the
term (m—mms)2 by (mms)z, (2) kept only the first non-vanishing term in the ex-
pansion of sinc [s(m-mms)/ws] about w =*O, (3) replaced sinc (w/ms) by unity,
and (4) extended the integration limits to + «=. All these approximations are
valid for r >> rp.

We first treat the case s = integer. The sum Fs(m, mM/ws) in Eq. (65a)
depends only weakly on wM/ws, varying by 8% over the range wg < Wy < o, There-
fore, we shall use the wM/ws = o limit [15]

F_(0,%) = (n"m2/9omsz); Aoy o O Sl (66)

in the calculation of Nz(r). Inserting Eq. (66) into Eq. (64) and transforming
the frequency variable of integration to the retinal frequency coordinate
v = wr/2n, we obtain

N2(r) = (1r3B/45ms) (2n,’msr)3f dv v
0

» Wy > ms,'rp < r<<vw, s = integer (67)

2 0%(v);

for ¢(w) = B/w2

*By so doing, we implicitly exclude the particular case g =0, for which we
should integrate over only posicive frequencies.
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Now, using Eq. (55) for Sz(r), we have

Idvv 0(\))
4 0

SN (o) = 2 (N (xh0))

uf i =l . 2 2
I dv v- 07(v)
0

for ¢(w) = B/wz, N,.. > 2Ns’ rp <<r<<vw,s= integer (68)

v

Here we have again employed Eqs. (2) and (35) to express wg and Wrg in terms of
Ns and NTV’ respectively. Utilizing the numerical result,

f av v2 0%(v) = 4.53 v°3 (69)

0
obtained from the measured O(v) (Fig. 5) along with Eq. (63) for the quantity

Jr dv v-z Oz(v), Eq. (68) reduces to
0
-6 2
S(r)/N(xr) = 3.31 x 10 [Ns(r/w)] ;

2
for ¢(w) = B/uw", NTV > 2Ns’ rp <r<<vw,s= integer (70)

For the case s ¥ integer, we again find that the sum Fs(w, mM/ms), defined
in Eq. (65b), varies relatively slo:ly with mM/ms. For s = 0, Fs(m, mH/ms)
rises monotonically from unity to 7 /6 over the range W < Uy <= Similarly,
for values of 8 near unity, we find that the ratio F (w,w)/F (w,1) has the
value 7 /6. At intermediate values of s, the relative variation of F (m,mM/m )
with mM/ms is somewhat smaller. For purposes of illustration, we will take
the limit [16],

Fs(m,w) = wz(l - 8)2/6; for 8 <1 (71)

with the realization that we are ignoring a weak variation with mM/ms that, in
the worst case, will give an error of less than 30X in S(r)/N(r). Substituting
Eq. (71) into Eq. (64) for Nz(r) readily gives the result
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Nz(r) = ﬂZB(l - 3)2/3ms2 G:r;

for ¢(w) = B/mz, N, > 2 Ns’ rp << ¢ << Vo¥s 8 < 1 (72)

TV
The perceived signal-to-noise ratio in the case at hand is obtained from Eq.
(72) along with Eq. (55) for Sz(r). Utilizing Eq. (63) and the value of 6:
from Eq. (30), we find

S(E)/N(r) = 1.83 x 107> N_(th) /(L - s);

for ¢(w) = B/mz, NTv > 2 Ns’ rp << ¢ << Vo¥s 8 < 1 (73)
Equations (62), (70), and (73) constitute the essential results of the

perceived signal-to-noise problem at large viewing distances for

ﬁ(m) = ginc (m/ms). In discussing these results, we notice first that all the

expressions for S(r)/N(r) diverge at large viewing distances. This is true

even tor the undersampled displays which contribute noise power at the lowest

frequencies. Although this result may have been expected on intuitive grounds,

it is indeed nontrivial, since it is a direct consequence of the measured

1/m2 power spectrum of natural scenes. To emphasize this point in a dramatic

way, we shall calculate S(r)/N(r) for undersampled displays using a white signal

power spectrum and show that a catastrophe results. The calculation is easily

performed by going back to Eq. (58) for the general N (r) with R(w) = 1 and

n(m) = ginc (m/ms). We replace the quantity B/(w - mw ) » representing the

power spectrum, by a constant C. Let us consider the special case s = 0 and

take delta-function printing. These statements require that we replace the

two sinc functions in Eq. (58) by unity. With these modifications, the formula

for Nz(r) becomes

nn)+m
N (r) = (C/7) Zf dw 0 (wr/2m);
m=1
M
for #(w) = C, s =p =0 (74)
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Now, for an undersampled display wy < Uy and for r >> rp, we can cut off the

sum at m = Mod (wM/ms) and extend the limits of integration to + », as was

done for the case of the 1/w” power spectrum. In that case, Eq. (74) reduces to

Lim

r > ®

Nz(r) = (ZC/Gwr) Mod (wM/ws);

for ¢(w) = C, N, > 2 Ns, s=p=0 (75)

v

2
Combining the above result with Eq. (56) for $"(r) for a white power spectrum,

we have

Lim /2

r > ®

S(E/MN(x) = [2 Mod (wyfu)]™"

for ¢(w) = C, N,., > N ,s=p=0 (76)

v

Equation (76) predicts that the limiting perceived signal-to-noise ratio for an
undersampled display with s = p = 0 is less than unity. Indeed, in the extreme

undersampled limit, there is essentially "infinite Moiré power," and the asymptotic
value of S(r)/N(r) vanishes! This result is model-independent since it makes no
stat.ement about the observer except that he has an acuity limit. If the result
were true, the simple act of placing a screen with extremely small holes* over
a natural scene would produce zero perceived signal-to-noise ratio no matter
how far away from the screen the observer positioned himself. Yet we know this
will not happen, and the reason, simply put, is that the statistical property
of natural scenes, as represented by the actual 1/w2 power spectrum, prevents
it.

Returning now to a discussion of the results for S(r)/N(r), Eqs. (62),
(70), and (73), we can make sever. = sbservations. First, all the S(r)/N(r)
diverge at large viewing distances as a power of r/w; the value of the exponent

depends on whether the display is oversampled or undersampled and on the value

*The holes are presumed to be sufficiently large for diffraction effects to
be negligible.
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of the sampling width s. The perceived signal-to-noise ratio diverges most

5/2] for oversampled displays and least quickly [as (r/w)]

quickly {as (r/w)
for undersampled displays with s < 1. Second, the dependence of S(r)/N(r)
on the number of samples is also a power law, ranging from NS3 for oversampled
displays to NS for undersampled displays with s < 1. Third, at large viewing
distances S(r)/N(r) is independent of s for extremely oversampled displays but
varies as (l-s)-1 for undersampled displays with s < 1. As s + 1, Eq. (73) no
longer applies, and Eq. (70) must be employed. Thus, S(r)/N(r) is sensitive to
s only for the case of undersampled displays, where large or integer values of
s are preferred. This behavior is to be compared with the visual capacity which
stresses small values of s for increased edge appreciation ability.

Table 1 summarizes our results for S(r)/N(r) in the large viewing dis-
tance limit for the constant printing function of Eq. (54) and for a Gaussian

printing function

exp [~ (x/px )]
exp [~ (npu/o )] (77

P(x)
fi(w)

[

Here p, the effective printing width, is the distance in units of X required
for P(x) to fall to the value 1/e. The expressions for S(r)/N(r) for the
Gaussian printing function were obtained using the technique employed in the
derivations of the results for the constant printing function Eq. (54). The
value w = 2n/w was employed throughout, and a Lorentzian ¢(w) = B[m2+wL2]-l
was used to describe the low-frequency behavior of the power spectrum. It is
seen from Table 1 that, for oversampled displays, S(r)/N(r) again diverges as
(/>

again independent of s. However, the dependence on p is very rapid, increasing

, as in the case of the constant printing function. Also, S(r)/N(r) is

as exp(nzpz). Thus, large values uf the printing width are preferred here.

v’ there exists a critical value of

p above which the Gaussian printing function gives a superior S(r)/N(r) over

Notice that, for a given value of Ns and N

the constant printing function Eq. (54). Denoting this critical value by P>

we have from Table 1

22 _ 1/2
= la (1.76 N_/N,

); for NS >> NTv (78;
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Table 1. Limiting Behavior of S(r)/N(r) for r >> T,

Display Type s i) S(r)/N(r)
Oversampled: any value sinc (w/ws) 3.38 x 10 (N /Nl/z) (r/w) 3/2
*
(ws >> wM) any value exp [- (npw/ws)zl 1.92 x 10~ N [exp (ﬂ p )] (r/w )5/2
Undersampled: integer sinc (w/ms) 3.31 x 10-6 [Ns(r/w)]2
(wS < wM) s <1 sin~ (w/ws) 1.83 x 10_3 Ns(r/w)/(l-s)
2 -6 2%%
integer exp [- (npw/ws) ] 3.31 x10 [Ns(r/w)]
s <1 exp [- (pu/u)®] 1.83 x 107> N_ (/)] (1-5) "

*For non-Gaussian printing functions, replace the quantity exp[n2 2] by
[H(w )11 provided fl(w) falls off sufficiently rapidly for the inequality
HZ(Zw )/16 << fi2 (wg) to be obeyed.

**kFor r/w >>

300 exp } -272 2], otherwise use S(r)/N(r) =

lexp (n2p2)] (r/w)d

since it violates the condition r/w << v, =

lation.)

-7 2

1.92 x 10

(Note for 2n“p< << 1, r/w >> 300 is not allowed

458 assumed

during the calcu—

+For r/w >> 450 [N {1-s) exp (n2p2)1‘2/3, otherwise use S(r)/N(r) = 1.92 x 10~/
N2 [exp (v2p2)] (e /w)512,

As an example, we take NS =

v

4N, = 1000, in which case Eq. (78) gives P, = 0.69.

For values of p above P. the Gaussian printing function is sufficiently broad

for the "ripple" fluctuations across the display screen produced by the Gaussian

to be reduced to the point where the overall perceived noise power is smaller

than that for the constant printing function.

-

plays, close examination of Table 1 shows that, for s =

For the case of undersampled dis-

integer, as p is in-

creased, S(r)/N(r) first follows the same law as for oversampled displays but

eventually saturates at a value given by the S(r)/N(r) for undersampled dis-

plays with a constant printing function.

Undersampled di-plays with s < 1 are

likely to follow the same law as for the constant printing function (independent

of p), depending on the specific values of NS, s, and r/w. The reason for the

seemingly complicated behavior for undersampled displays lies in the competi-

tion between the noise spectra centered around multiples of the sampling fre~-

quency and the noise spectra concentrated at lower frequencies w S 27 vo/r << w
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The former noise source has a much larger power spectrum N(w), but the latter
is transmitted to the perceptual level more efficiently because it lies well
within the effective passband of the human visual system. As p is increased,
we essent}ally filter out the high-frequency (mms) noise by decreasing the
range of lI(w). Eventually, the low-frequency noise dominates, giving us the
same results as for the case ﬁ(w) = ginc (w/ws).

The behavior of S(r)/N(r) in the limit r » 0 is of little practical in-
terest. Furthermore, in actual fact, the calculation breaks down as r > 0
because the MIF of the human vicual system degrades as a result of the eye's
inability to focus. Nevertheless, trends exhibited by S(r)/N(r) as a function
of the display parameters are important, so that we have employed Egqs. (50) to
(52) to compute S(0)/N(0). The results are presented without derivation in
Table 2 for the cases of constant [Eq. (54)] and Gaussian [Eq. (77)] printing
functions. We note first the apparently paradoxical inverse relationship
between S(0)/N(0) and N, for the case of the Gaussian printing function with
exp (2n2p ) >> 1. This result requires special comment. It does not violate
the requirement that S(r)/N(r) »> = as Ns + » gince the entries in cthe table
were calculated in the limit wsr/2ﬂ = Nsr/w + 0. Taking Ns + » before specify-

ing r always gives S(r)/N(r) + =. The inverse dependence of S(0)/N(0) on N,
arises from the fact that, for wsr/2ﬂ + 0, the frequency Wy corresponds to a

retinal frequency wsr/2ﬂ that lies on the rising part of the MTF of the human
visual system (see Fig. 5). Since much of the noise spectrum for the Gaussian
printing function is concentrated near Wes the perceived noise power increases
with the sampling rate as wsz because of the linear low-frequency behavior of
0(v) [Eq. (32)]. On the other hand, the effective passband of the perceived
signal power 1s independent of W for the oversampled case and is proportional

to wg to only the first power in the undersampled case. Thus, the linear low-

frequency behavior of O(v) is responsible for the inverse dependence of S(0)/N(0)

on N .

sFurther examination of Table 2 shows: (1) for delta-function printing
p =20, S(r)/N(r) + 0 as r > 0, the exact dependence on r depending on the de-
tails of the sampling process, (2) for full-width printing H(w) = ginc (w/w ),
S(r)/N(x) » O as rll » (3) S(0)/N(O) increases rapidly with the printing width
p, and (4) S(0)/N(0) is sensitive to s only in the case of undersampled dis-

plays with large p, where large or integer values are preferred.
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Table 2. Limiting Behavior of S(r)/N(r) for r » 0

Display Type 8 ﬁgml S(x) /N(x)
Oversampled: any value sinc (w/ws) S(r)/N(r) + 0 as r1/2
(w8 >> mM) any value exp [-(npw/ws)zl [exp (ﬂ P )] (N /2 N )1/2 for

exp (Zﬂ p ) > 1
S(r)/N(r) + 0 as £3/2 for p=20

Undersampled: any value sinc (m/ms) S(x)N(r) » 0 as r1/2
(ws << mM) s=0 exp [-(ﬂpw/ws)zl S(r)N(r) *0Oasr for p=0
s >0 exp [-(npw/ms)z] S()N(r) » 0 as r3/2 for p=0

any value exp [-(rpu/a)?] exp (rp2)/12m Y (v /7"

*For 1 << exp (21t2 2) << 3800 pSN for s = integer or 200p Ns/(l-s) for s <1;
if the last part of the inequality is not satisfied, use S(0)/N(0) = 2(3)!
p/(1-s) for s < 1 or S(0)/N(0) = 4(15)1/2p2 for s = integer.

e. Discussion Summary. - To summarize briefly the results of our analysis of
the perceived signal-to-noise ratio S(r)/N(r), we have found that S(r)/N(r)
increases monotonically with viewing distance. We have also found that S(r)/N(r)
increases rapidly with the number of samples at ordinary viewing distances. Wide
printing functions are definitely preferred, as are large or integer values of
the sampling width s. However, the parameter s is important in determining
S(r)/N(r) only in the case of undersampled displays. The dependence of

S(r)/N(r) on s and p is opposite to that of the visual capacity, where small
values of s and p are desired. Thus, we have the general rule: Narrow width
sampling and printing enhances the appreciation of sharpness through the in-
crease of CT(r) However, it does so at the expense of the perceived signal-

tr-noise ratio S(r)/N(r).

d. Calculated Examples. - Some of the important properties of the perceived
signal-to-noise ratio are illustrated in Figs. 11 through 14, where we have
employed Eqs. (50) to (52) to calculate S/N numerically for various display
systems. The curves in Fig. 11 are the calculated S(r)/N(r) vs viewing dis-
tance in units of picture height h for a hypothetical television display. In
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Figure 11. Perceived signal-to-noise ratio S/N as a function of viewing
distance in picture heights for a hypothetical television
display. The dashed curves represent the S/N for the vertical
direction (Ng = 480) with two different printing functions
(see text). The solid curves represent the S/N for the

A horizontal direction (Ng = 740) with two types of bandwidth

4 limitation (see text). The values of the sampling width s

- are given in the figure.
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Figure 12,

VIEWING DISTANCE: r/h

Perceived signal~to-noise ratio S/N as a function of viewing
distance in picture heights for the vertical direction

(N_ = 480) of a television display. The values of the parameter
p, which represents the effective width of the Gaussian print-
ing function, are given in the figure. The particular valuz
obtained from measurements of a commercially available kine-
scope is indicated,.
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Figure 13. Visual capacity C$ and perceived signal-to-noise ratio S/N as
a function of the number of samples for the horizontal direction
of a hypothetical television display. The viewing distance is

i 3 picture heights, and the bandwidth limitation has been set

! by the U.S. Monochrome Standards (Npy = 471). Curves are

1 shown for s = 0 and s = 1,
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the vertical direction there are the customary 480 samples with practically no
band limitation on the input signal, so that we have taken Wy = o, correspond-
ing to the extreme undersampled limit. We use the value s = 1, i.e., full-
width sampling. In the horizontal direction, instead of the usual analog
scanning system, we have taken Ns = 740 samples with the band-limiting input
characteristic R(w) corresponding to either the full U.S. monochrome bandwidth
of 4.5 MHz (NTv = 471) or a 3.5-MHz (NTv = 366) cutoff, in accordance with
current U.S. practice. Thus, the picture-producing capability in the hori-
zontal direction is that of an oversampled display, sampled at 1.6 or 2.0
times the Nyquist rate Ns = NTV’ depending on the particulaE bandwidth chosen.
We employed a constant printing function, corresponding to II(w) = sinc (pw/ws),
where p = 1 for complete uniform illumination of one sampling location

[Eq. (54)]}. We used the value p = 1 in all cases except for the curve labeled
"Scanning Beam Width = 2 Scan Lines'" for which we took p = 2. It is seen from
the figure that the two dashed curves for the 480 samples follow the expected
behavior with viewing distance, eventually achieving the r2 dependence pre-
dicted by Eq. (70). The case p = 2 gives superior signal-to-noise performance,
particularly at the smaller viewing distances, in agreement with our observa-
tion that wide printing functions increase S(r)/N(r). By examining Egqs. (50)
to (52) for S(r)/N(r), one can readily show that, for ﬁ(w) = ginc (pw/ws) and
for p and s both integers, the parameters s and p can be interchanged leaving
S(r)/N(r) unchanged. Therefore, the upper dashed curve in Fig. 11 also rep-
resents the S(r)/N(r) for p = 1 and s = 2. Recalling that the lower dashed
curve is calculated for s = p = 1, we see that this result illustrates the
beneficial effects of large sampling widths in undersampled displays. The
three solid curves for 740 samples lie well above the curves for 480 samples.
Most of the difference between the two sets of curves arises from the fact
that the horizontal direction of our hypothetical display is oversampled
whereas the vertical direction is undersampled. Very little difference arises
from the larger number of samples per se, since the 4:3 aspect ratio of the
television screen brings the number of samples per unit length for the hori-
zontal and vertical directions to within about 15% of each other. It can be
verified that the S(r)/N(r) for the solid curves approaches the characteristic
r5/2 law, as predicted by Eq. (62). Furthermore, note that raising the sampling
width from s = 0 to s = 1 produces very little change of S(r)/N(r), also in
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agreement with Eq. (62) and our general observation that s is an important
parameter only in undersampled displays. Finally, note that the utilization
of the full 4,5-MHz (NTv = 471) U.S. monochrome standard bandwidth gives a
somewhat lower S(r)/N(r) than the 3.5-Miz (NTV = 366) system, also in general
accord with Eq. (62).

Figure 12 illustrates the effect of varying the width of the printing
function on the S(r)/N(r) for the vertical (sampled) direction of television
displays. The values of p, the width parameter for the Gaussian printing func-
tion Eq. (77), given in the figure are the same as those employed to calculate
the corresponding Cz(r) shown in Fig. 9. The particular value p = 0.642 was
the value measured for the real kinescope described in the discussion of the
visual capacity. Thus, the curve for p = 0.642 is actually the same as in
Fig. 10. It can be verified from the figure that S/N varies approximately as
exp(nzpz) at very small viewing distances, whereas S/N is only weakly dependent
on p and approaches the expected r2 dependence at large viewing distances. All
this is in accord with the behavior predicted by the analytic approximations,
as summarized in Tables 1 and 2. Comparisor of Figs. 9 and 12 shows a striking
example of the rule that narrow-width printing functions favor the visual
capacity but only at the expense of decreased perceived signal-to-noise ratio.
The optimum tradeoff between visual capacity and perceived signal-to-noise ratio
will be discussed in the next section.

As an example of the importance of the sampling rate in determining
picture quality, in Figs. 13 and 14 the visual capacity and perceived signal-
to-noise ratio, calculated from Egqs. (23), (27), and (50) to (52), are simul-
taneously plotted against the number of samples at two viewing distances for a
display operating with a band-limited input characteristic corresponding to the
full U.S. monochrome bandwidth (NTv = 471). The printing function is taken to

be that of Eq. (54), i.e., uniform illumination of a single sampling location
(p = 1). Curves are shown for both s = 0 and s = 1. We have again taken the

television format of a 4:3 aspect ratio, so the viewing distances r = 3h and
4h correspond to 2.25 and 3 picture widths, respectively. At each viewing
distance, C3 rises with the number of samples, eventually saturating in the
analog limjc at a value détermined by the band-limited characteristics of the
display and by the limitations of the visual system. For the U.S. monochrome

standards, the maximum value of C3 in the analog limit, as calculated from
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Eq. (26), is approximately 450 and is achieved at rp = 4,03h. On the other
hand, S/N increases without limit, rising rapidly from its low value near the
Nyquist sampling rate Ns = NTV = 471, Examination of Figs. 13 and 14 shows
that very little gain in S/N is achieved by employing full-width sampling

3

: s = 1 rather than delta-function sampling s = 0. This is another example of
: j the analytically derived result that S/N is not sensitive to the value of s in
oversampled displays. On the other hand, by using s = 0, Cf is strongly en-

TR

hanced in the range of Ns under consideration. This result follows from
Eq. (27) for Cz. Therefore, our results strongly indicate that na:row-width
sampling 1s preferred on an overall basis in oversampled displays.

From the s = Q0 curves in Figs. 13 and 14, one sees that, at a viewing
distance of 3h, nearly 700 samples are required to give S/N = 30, a satisfac-
3 tory value. At this point, CE is about 340, and a gain of less than 107 in
CE is obtained by a 50% increase of the number of samples to 1050. At a
viewing distance of 4h, only about 570 samples are required to achieve S/N = 30.
For 570 samples and s = 0, CE = 360, and a 17% increase is achieved by going

4 to 1050 samples. Thus, almost identical performance in terms of sharpness

and perceived signal-to-noise ratio is obtained with 570 samples at a viewing
distance of 4h as is found with nearly 700 samples at a viewing distance of
3h. This simple example serves to illustrate the kind of tradeoffs that one
can consider when the human observer is explicitly included in the calculation

of performance criteria,

e. The Correlation Quality and the Mean Square Perceived Error. - In closing
this section, we derive an important relation between the perceived signal and

noise powers and two new quantities which have interesting and useful proper-

ties. The first of these new quantities is the correlation quality [17] Q
defined by

E@E, (>
Q= ——— (79)
<€ 2(x)>

*This result does not take into consideration possible beneficial effects of
large values of s in integrating out electronic noise that may be present
along with the video signal before the sampling process.

N
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where E((x) is the perceived intensity pattern reproduced by a perfect display,

i.e.,

4o
Eo(x) = f g—: 0(wr/2m) io(w) exp (iwx) (80)

The quantity Q is proportional to the cross correlation function between the
perceived scene as actually reproduced by the display and the scene produced
by a perfect reproduction device. It is, therefore, a measure of the degree
to which the perceived picture resembles a perfect reproduction of the original

scene. Making use of the theorem of Section III.C [Eq. (22)], Eq. (79) becomes

<Es(x) Eo(x)>

2
<E° (x)>
The second quantity is the mean square perceived error [17] e, defined by
2
<(E(x) - E_(x))">
€ = (82)

<E°2(x)>

From this definition, it is evident that € is the mean square deviation of the
perceived picture from the perfect reproduction, normalized to So2 = <E°2(x)>,
the perceived signal power for the perfect display. To obtain the desired
relationship, we expand Eq. (82) and obtain

£e=1-2Q+ <E2(x)>/<E°2(x)> (83)

)
where we have used Eq. (79) for Q. Next, we note that So‘ can be obtained
from Eq. (50) by setting Reff(w) = 1. Then, using Eq. (47) to express <E2(x)>

in terms of the signal power S* and the noise power Nz, Eq. (83) becomes

e=14+29+ (524 Nz)/so2 (84)
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where

400

Soz(r) - / %‘T‘rloz(wr/zn) o(w) (85)

Eq. (84) is a relation between the correlation quality, the mean square per-
ceived error, the average perceived signal powers for the actual and perfect
displays, and the average perceived noise power.

We can write Eq. (84) in explicit form using the following expression
for Q(r):

4

f g—(:' Oz(wr/ZTr) Re Reff(w) $(w)

00

(86)
[ & 0% (or/21) #(w)

00

Equation (86) is easily proved using the technique of Section III.C. Taking
the expectation value of Es(x) Eo(x) naturally introduces the factor Reff(w),
the effective MTF that generates the signal part Es(x) of the total perceived
response E(x). Then, because of the reality of Es(x), the integration over
all w projects out only the real part of Reff(w). Substituting Eqs. (85) and
(86) into Eq. (84) and making use of Eqs. (50) and (51) for 52 and N2, respec-

tively, gives the expression for e(r),

a2V i @] o) + |R_. ()] >N( \
[ 750 M U Rgg (o eff ) eff ! N
e(r) = — (87)
+°°dw 2

f 22 0" (ur/2m) #(w)

From Eqs. (86) and (87) with ¢(w) = B/wz, it is a simple matter to show:
(1) Lim Q(r) = 1 (an imperfect picture cannot be distinguished from a perfect
one ;:mvery large viewing distances), (2) %18 Q(r) = 0 (there is no correlation
between the perceived ; icture and a perfect picture at very small viewing dis-

tances, a consequence of the band limitation of all displays), (3) %ig e(r) = 0
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(there is no perceived error at large viewing distances, a result consistent
with (1) above), and (4) %38 e(r) =1+ Nz(r)/Soz(r) (the normalized mean square

error is equal to unity plus a term proportional to the noise power). Figure 15

3

illustrates this behavior for the case of noiseless analog television displays y
R

operating with a 3.5-MHz band~limited input characteristic. Curves of 81/2 and 2

Q are shown as a function of viewing distance for an ideal kinescope Ro(w) =1

: .
% i and for the actual measured MIF of a color kinescope . The vertical arrows

ok 5 -

3 g in the figure indicate the calculated viewing distance rp for maximum visual
capacity. It is interesting to note that, at the viewing distance for maximum 3

| edge appreciation, the correlation quality is greater than 0.9 and the rms

perceived error is in the range 0.16 to 0.18.

f E. THE TOTAL INFORMATION CAPACITY - A COMBINED PERCEIVABLE

; INFORMATION DESCRIPTOR
} In Section III1.D, we described how one can characterize a sampled display
i in terms of visual capacity (its "sharpness' or edge discrimination ability in

o I, Ui 4 by S i, AR

the absence of noise) and the perceived signal-to-noise ratio (a measure of

bdre o

the amount of disturbing noise, relative to the perceived signal content). We

presented evidence that values of the perceived signal-to-noise ratio in the

R 9 G

neighborhood of 20 are representative of high-quality television displays,
viewed at normal distances. We indicated how one can quantify the effect of

varying such parameters of the display process as bandwidth, number of

 witvedibas

samples, sampling width, and printing width., It was indicated that questions
regarding the optimization of the parameters of the sampling process involve
the tradeoff between edge discrimination ability and perceived signal-to-noise ;

ratio. An example where such a tradeoff must be considered is the case of the

effective printing width p; small values of p favor visual capacity but at

the expense of the perceived signal-to-noise ratio, and vice versa. Therefore,
a single descriptor that combines both visual capacity and perceived signal-to-
noise ratio would be of obvious utility. For example, suppose we are faced

E with the question of what is the optimum printing width at a particular view-
ing distance, given the constraints that total luminance (brightness times

area) and all other properties of the sampling process are held constant.
*E. W. Herold, private communication.
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We might guess that at very small viewing distances, it would be beneficial to
employ large values of p in order to avoid as much as possible the large amounts
of disturbing noise introduced by narrow printing functions (see, for example,
Fig. 12). On the other hand, at very large viewing distances, the eye would
be unable to perceive this noise, and a continuous picture would be observed.
In that case, it might be beneficial to use the smallest practical active area
(again keeping the total number of photons constant) in order to gain a sensa-
tion of sharpness from the finer printing (see, for example, Fig. 9). If this
line of reasoning is correct, there exists an optimum value of p which depends
explicitly on viewing distance and the other parameters of the sampling pro-
cess. A unified descriptor should be capable of predicting this optimum
value.

A unified descriptor must weigh Cz and S/N in a manner that parallels,
as closely as possible, the way in which the human observer weighs the
relative virtues of sharpness and freedom from disturbing noise. We have no
a priori knowledge and little a posteriori knowledge in this area, so that
any approach must be, to a certain degree, ad hoc. However, we can heuris-
tically continuz our approach based on statistical communication theory and
consider the total information capacity of the display-observer system.

It is well-known {10, 18, 19] that the limiting rate of information
transfer of a communication system is determined by the system's bandwidth
and its overall signal-to-noise ratio. The bandwidth determines the maximum
rate of transmission v of the information-carrying pulses, and the signal-
to-noise ratio fixes the number of levels q which each pulse can assume. For
a communication channel that can handle q pulse levels and whose maximum
transmission rate is u pulses/second, the system can assume S = quT discrete
states during a message duration time T. The information capacity of the
channel is K = logZS = uTlong and is measured in biis.

In real communication systems, the maximum number of permissible levels
is determined by the available cignal-to-noise ratio, the acceptable trans-
mission error rate, and the details of the encoding and decoding methods
employed. However, Shannon [10] has shown that the maximum information that

can be transmitted in time T without error is given by

H = QT log, [1+ (S/N)i] (88)
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where (S/N)% is the total system signal-to-noise ratio for power, and & is
the bandwidth of the system. We may regard Eq. (88) as arising from the re~-
placement of the pulse transmission rate {18, 19] by twice the bandwidth and
the number of pulse levels q by the auantity [18, 19] [1 + (S/N)i 1/2.

A measure of the total information capacity of the communication channel
consisting of display and observer can be obtained by defining H as the maximum
amount of visual information that a human observer can perceive across a
display of width w. Recalling that the visual capacity Cs is defined as the
number of fully resolvable edge transitions that can be perceived across a

display, it is natural to identify the bandwidth @ in Eq. (88) as one-half

the visual capacity. Thus, we have

g=21cT (89)
2 v

Next, we consider the total system signal-to-noise ratio (S/N)T' In our
display-observer communication system, noise arises from both the display
and the observer. The display noise power N2 represents noise as it is
produced by the picture reproduction device and filtered by the MIF of the
human visual system. The observer noise Ni is a characteristic of the human
visual system. As these noise powers are uncorrelated, it is reasonable to

assume that they are additive

2 _ 2 2 90
NT-N + N, (90)
Next, we make the simplifying assumption, consistent with experimental
observation, that the noise Ni of the human visual system is set by the

signal level; the noise rides with the signal so as to maintain a constant
effective signal-to-noise ratio of the human visual system (S/N)h’ regard-

less of the signal level.* This means that we may write

N2 = 52 (S/Ny "2 1)
v h

*This assumption is consistent with the Weber-Fechner law, which states that
the minimum observable brightness difference is proportional to the brightness
(14].
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whereupon Eqs. (90) and (91) give the following formula for the total system

signal-to-noise ratio

-1
(/M2 = [(sm)'2 + <S/N);2] (92)

Here (S/N)2 is the perceived signal-to-noise ratio, given by Egs. (50) and
(51). As a function of S/N, the total system signal-to-noise ratio is equal
to S/N for (S/N)2 << (S/N)ﬁ but eventually saturates at the value (S/N)h

as S/N is increased indefinitely. This behavior is in qualitative agreement
with our experience in examining noisy pictures. We know that beyond a certain
point, there is no advantage to be gained in increasing the display signal-to-
noise ratio., The improvements are simply not perceived., On the basis of (1)
our observation in Section III.D that a high-quality television display is
characterized by values of S/N in the neighborhood of 20, and (2) the Weber-
Fechner law, we expect (S/N)h to be on tne order of 10. This value of (S/’N)h
implies that the maximum number of perceivable levels ¢ for the human visual
system in the absence of display noise is approximately 10. However, we
know that far more grey-scale levels are perceivable in a typical display
with, say, a maximgm contrast ratio of 100:}. The reason for this discrepancy
lies in our treatment of the human visual system as a linear system, whereas
the Weber-Fechner law establishes the position of perceivable gray-scale
levels exponentially. The assignment of a single numper to the effective
signal-to-noise ratio of the human visual system is undoubtedly an over-
simplification, since it may change with viewing distance and other display
and environmental variables, but in our simple heuristic approach, we shall
take (S/N)h to be a single parameter. Numerical calculations have indicated
that, within the expected range of values of (S/N)h’ conclusions derived from
the calculations are insensitive to the precise value of this parameter.
liaving determined the quantities corresponding to the bandwidth and the
total system signal-to-ncise ratio for the case of a display-observer systeu,
we can substitute Eqs. (89) and (92) for these quantities into Eq. (88) for
the total information capacity H., Making the dependence on viewing distance

explicit, we have

Cy(r) 1log, ; Le (S@men ™+ smy (93)

\

H(r) =

N[ =
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Even though the basic assumptions used in deriving Eqs. (92) and (93) are
consistent with experimental observations, they cannot be directly verified
through state-of-the-art psychophysical measurements. ievertheless, Eqs. (92)
and (93) can be arrived at through purely formaiistic arguments. The physical
significance of the signal-to-noise ratio is that it determines the number of

distinguishable levels q. We know from experimental observations (the Weber-
Fechner law) that there exists in the human visual perception process some
mechanism that sets the minimum discernable contrast difference even in the
absence of image noise. (We assume that the image is sufficiently bright that
quantal fluctuations [14] are not dominant.) We can describe this internal
mechanism by an effective signal-to-noise ratio (S/N)h such that for noise-
free images, the number of discernable levels is q = [1 + (S/N)ﬁ 1/2. If
the perceived image signal-to-noise ratio S(r)/N(r) is much poorer than
(S/N)h’ then the number of levels is determined by the image noise, so that
q=[1+ (S(r)/N(r))z]llz. The above two expressions for q describe the ob-
server-display system's behavior in the asymptotic regimes of S(r)/N(r) » =
and S(r)/N(r) » 0, respectively. In the range where S(r)/N(r) # (S/N)h, we
expect that the number of discernable levels is smaller than that predicted
by either one of the above asymptotic formulas. In the absence of additional
information, we now wish to combine mathematically the effects of the internal
mechanism and of the image noise in such a way that the above expectation and
the asymptotic behaviors are properly described. The simplest mathematical
expression that satisfies these requirements is obtained by defining a total
effective signal-to-noise ratio (S/N)T through Eq. (92). Substituting
Eqs. (89) and (92) into Eq. (88), we arrive at the expression for H(r) given
in Eq. (93).

Equation (93), along with Eq. (26) or (27) for Cz(r) and Eqs. (50) and
(51) for Sz(r) and N2(r), constitutes our proposal for a unified descriptor.
It should apply to sampling noise, for which the noise power spectrum is given
in Eq. (52), and other forms of noise for which the noise power spectrum is
specified. The quantity H represents the total information capacity of the
display-observer system, including the effects of both edge discrimination
ability and noise perception. By analogy with ordinary communication channels,
H is to be measured in bits. It should be emphasized that H in no way repre-

sents the actual information transfer from the original scene to the perceptual

level.
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a. Properties of the Totai Informaiion Capacity. - The properties of H(r)
are easily derived from those of Cz(r) and S(r)/N(r). In the noiseless dis-
play limit [S(r)/N(r)]2 >> (S/N)Z, the perceived signal-to-noise ratio does
not affect the total information capacity, so the H(r) is equal to a con-

stant times Cz(r):

|
HE) = 3 C,(0) logy )1+ (S/N)ﬁt; for [S()/N(D1? >> (S/M?E (94)

As S(r)/N(r) is decreased, the perceived noise decreases H(r) from the noise-
less display limit Eq. (94). Indeed in the limit [S(r)/N(r)]2 << (S/N)i, the
total system signal-to-noise ratio is determined by the display noise, and

H(r) is reduced in a logarithmic manner from the noiseless display limit:

H(r) = 3 Co(x) log, {1+ (SN2

for [S()/M(D)1% << (SN} (95)

In Section III.D, we showed that, for sampled displays, S(r)/N(r) is a
monotonically increasing function of r, rising from a finite or zero value at
r = 0 and diverging as r * = (see Tables 1 and 2). On the other hand, Cs(r)
exhibits a peak at a viewing distance r_ and approaches zero at both r = 0 and
r + o, From these results, it is clear that H(r) will also always exhibit a
peak at a particular viewing distance which is z_rp. We call the viewing dis-

tance for maximum H(r) the optimum viewing distance and denote it by r We

opt’

do so on the grounds that r, represents the viewing distance which maximizes

pt
the total information capacity of the display-observer system, including the
effects of both edge discrimination ability and perceived noise.

b. Sharpness-Limited and Noice-Limited Displays. - We find it convenient and

natural to divide displays into two categories:

(1) Sharpness-limited displays: those displays for which S(r)/N(r) has
risien to a value greater than (S/N)h at the viewing distance rp for
maximum Cz(r). An observer located at r = rp does not find noise
objectionable.

(2) Noise-limited displays: those displays for which S(r)/N(r) is
considerably less than (S/N)h at rp. Noise is very apparent to an

observer located at rp.
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For sharpness-limited displays, perceived noise dces not appreciably
affect the value of H(r) for r R T Thus, Eq. (94) holds in this viewing
distance range, and ropt N rp. An example of a sharpness-limited disglay
is the vertical (sampled) direction of the television display whose Cv(r)
and S(r)/N(r) are graphed in Figs. 8 and 10, respectively. The calculated
S(rp)/N(rp) = 21 at the viewing distance r, = 4.7h p;ts this display in
the sharpness-limited class. Using the calculated CV(r) and S(r)/N(r), we
obtain from Eq. (93), with (S/N)h = 10, the graph of H(r) indicated by the
dashed curve in Fig. 16. For comparison, we also show the calculated H(r)
for the horizontal analog scanning direction of this display, using the Cs(r)
from Fig. 8 and assuming noiseless picture reproduction [S(r)/N(r) = =].
Comparing Fig. 16 with Fig. 8, it is seen that the effect of the sampling noise
on the total information capacity is minor for r ; 3h. The optimum viewing
distance is ropt = 5,1h instead of the value rp = 4,7h for maximum visual
capacity. The decrease of the peak value of H(r) due to sampling noise is
only about 4% of the value % C3(rp)10g2[1 + (S/N)ﬁ] = 929 bits that would have
been achieved in the absence of sampling noise. For r < 3h, the H(r) for the
vertical direction drops much more abruptly than that for the horizontal
direction, actually falling below the latter curve for r < 1.3h. This effect
is due to the rapidly decreasing S(r)/N(r), as shown in Fig. 10, vhich drastic-
ally reduces H(r) at small viewing distances.

In the case of noise-limited displays, the effect of the noise is to
reduce H(r) appreciably in the neighborhood of rp. It then becomes advanta-
geous to increase the viewing distance in order to raise the perceived signal-
to-noise ratio. The distance ropt is then determined by a tradeoff between
the decrease of C$(r) at large viewing distances, as given by Eq. (28), and the
natursl increase of S(r)/N(r). As an illustrative and significant example,
we consider the case of an analog display with a flat overall MIF Ro(m) =1
for |u|<mM. We assume a white noise power spectrum N(n) = N(0O) so that the

noise power Ns’ as measured on the display screen, is given by Eq. (53):

Nz = (w, /™) N(O) (96)
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Figure 16. Total information capacity H as a function of viewing distance

in picture heights for a real television display device. The 3
L H for both vertical and horizontal directions are shown. The :
= value of the parameter (S/N)h was taken to be 10. An Ng = 640- A
=

line format has been employed in order to compensate for the
4:3 aspect ratio of the display screen. The 03 and S/N for 3
this display are given in Figs., 8 and 10, respectively.

The perceived noise power Nz(r) for constant N(w) is obtained from Eq. (51).

Setting Reff(w) = 1 for |w|_§ Wy We have
1 +wM 3
| M) = (N2 /) f 90 0% (ur/2m) (97
3 -

PRREACNTF, PR

We are interested in t¢he viewing distance regime r >> rp, where, according

1 to Eq. (34), rp is approximately 2nvo/wu. In that case, the limits on the
; integration in Eq. (97) may be extended to 1w, giving us the following

g expression for Nz(r):

3 Nz(r) = (ﬂ/wMO:r) NZ; for r >> Zﬂvo/wM (98)
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Here we have employed Eq. (29) to express the integral in terms of 6:, the
perceived angular width of a single edge transition. Turning to the perceived
signal power, for the measured signal power spectrum $(w) = B/wz, we can

make use of Egs. (55) and (63) for Sz(r) in the large viewing distance limit.

We have then
2 2
S*(r) = (4.73 Br/2n vo); for r >> 21rv°/wM (99)

Next, we go back to Eq. (42b) in order to express the power amplitude
coefficient B in terms of the ensemble average input power <I (x)>. For

Wy >> Wy s the average signal power S g* 38 measured on the display screen,

is identical to the average scene power within the field-of-view of the imag-
ing systemn, <I (x)> This is because the 1/m2 power spectrum concentrates
most of the signal power at low frequencies, thereby rendering S independent

of Wyye With these considerations, Eq. (99) becomes

Sz(r) (4.73 w r/n v ) S s for r >> 2mv /w (100)

M
Combining Eqs. (98) and (100), we obtain the asymptotic behavior of S(r)/N(r)

for white noise at large viewing distances:

S(r)/N(r) = 1.88 x 1073 1/Z(I/w) (S /M)

for r/w >> 900/NTV (101)

In arriving at Eq. (10l1), we have used the value of 9: given in Eq. (30),
employed the expression N_ = wa/ﬂ to write the maximum frequency in terms
e 2vw/w and v, = 458

cycles/radian-of-vision. From Eq. (10l1), it is seen that S(r)/N(r) is propor-

v
of the maximum number of TV lines, and once again set w

tional toS /N , the signal-to-noise ratio as measured on the display screen,
s' s 1/2

v

cause the assumed white noise spectrum gives an rms noise fluctuation Ns that

and also varies linearly with viewing distance. The factor N arises be-

is proportional to the square root of the bandwidth [see Eq. (96)]. It is

1/2

convenient to think of the quantity N /N in Eq. (101) as representing

[N(0)] e , the square root of the noise spectral density.
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Given Eq. (101) for S(r)/N(r) and Eq. (28) for Cz(r) in the large
viewing distance limit, we differentiate Eq. (93) for H(r) in order to calcu-
late the optimum viewing distance. The operation is straightforward and gives

us the following condition for ropt:

) {1 + (S/N)i} in [1 4+ (S/N)ii] _,

(S/N) p
S/

(102)

r = ropt

where (S/N)T is the total system signal-to-noise ratio, given in Eq. (92).

Equations (92) and (102) can be solved numerically for the required value of
S(ropt)/N(ropt)' We find that S(ropt
of the value of (S/N)h, varying from the value 1.90 for (S/N)h = 10 to

)/N(ropt) is essentially independent

1,98 for (S/N)h = », We take the former value, thereby giving us the
result that, for extremely noisy displays, the viewing distance for maximum

H must be increased from rp until the condition

S(ropt)/N(ropt) = 1.90 (103)

is met. From Eq. (101), it is seen that Eq. (103) is satisfied when

ope/ = 1010/[N%62 (S /N1 (104)

Since we demand that ropt >> rp, Eq. (104) can be used to establish a con-

dition on the value Ss/Ns' From the inequality in Eq. (101), we have

1/2 ’
Ss/Ns << NTV (105)

The maximum value of H(r), corresponding to the viewing distance given in
Eq. (104), is easily obtained from Eq. (93) with Cz(r) - w/6:r. Taking
(S/N)h = 10, we compute

1/2

H(ropt) = 2.0 NTV

(S,/N) (106)
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It is instructive to cast this result in terms of the maximum visual capacity
of a noiseless analog display with the same value of H(ropt)' In order to
accomplish this, we use the fact that a display with a flat overall MIF
Ro(w) = 1 for |uw] 5,nN$3/w has a maximum visual capacity [11] Cs(rp) = Ngg.
Then from Eqs. (94), (105), and (106) with (S/N)h = 10, we see that an
extremely noisy display with a white noise spectrum has the same maximum total
information capacity as a noiseless display with a limiting resolution given

by

eq _ 1/2 . eq 107
Npy = 0.60 No (SS/NS), for Npy << Npy (107)
Equation (107) is remarkable, for it says that an extremely noisy display
is equivalent in total information capacity to a noiseless analog display whose
resolution is proportional to the signal-to-noise ratio, as measured on the
screen ¢f the noisy display. This is true despite the fact that H(r) depends

logarithmically on the total system signal-to-noise ratio. Furthermore, using

Eqs. (42) and (96), it is possible to >liminate the factor N%éz on the right-
hand side of Eq. (107) and express N;% entirely in terms of the ratio of the

signal power amplitude coefficient B to the noise power spectrum N(O). Thus,
the total information capacity of an extreme noise-limited display is inde-
pendent of its resolution. The display is so noisy that its optimum perform-
ance depends only on the input signal power and the noise power c¢pectrum. This
situation is analogous to the case of an ordinary noisy communication chanrel.
Suppose, for example, that we are receiving information from a distant source
such as a space probe. As the source recedes, the intrinsic signal power
decreases, while the intrinsic noise power remains constant. If we want to
keep the error rate constant, we must increase the signal integration time
proportionately in order to maintain the required overall signal-to-noise
ratio., However, this means that the bandwidth, and hence the information
transmission rate, is decreased by the same factor as the signal power. 1In
effect, the information transmission rate is proportional to the ratio of the
signal power to the noise power. For the case of the display-observer commun-
ication channel, increasing the viewing distance is analogous to increasing

the integration time. As the ratio of signal power to noise pover decr:;pes,

the observer must increase his viewing distance in order to maintain the’ value
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of the perceived signal~-to-noise ratio given by Eq. (103). As the viewing
distance increases, the "bandwidth" or visual capacity decreases proportionatcely
[Eq. (28)]. The net effect is that the maximum information capacity is pro-

portional to the ratio of signal power to noise power,

e. The Equivalence Factor and its Relation to the Kell Factor. - The concept
of an equivalence factor that can be employed to convert the overall picture
reproduction ability of a sampled display with Ns samples into an effe;tive
number of TV lines for an analog display has had historical appeal. The early
work of Kell [20] and coworkers showed empirically that, for television
displays, the picture reproduction ability of Ns samples is equivalent to an
analog scanning display system with a limiting resolution corresponding to

N . =K Ns’ where K is the so-called Kell factor. Values of K in the range

v
0.53 to 0.85 were observed [21].

The formalism pr:sented in this report allows one to calculate the required
number of TV lines NTV for a noiseless analog display to produce the same
maximum total informatioa capacity as a saxpled display with Ns samples. We

define the equivalence factor § according to

& = Ny /N ; rzuopt) INTV= H(ropt)le (108)
where it is understood that NTv and Ns give the same value of H(r) at their
respective optimum viewing distances. It is clear that & will depend on the
various parameters of the sampled display (sampling width, printing width,
bandwidth) and the characteristics assumed for the analog display [the form of
the overall MTF Ro(w)]. As ar example, we consider the vertical (sampled)
direction of the television display whose H(r) is indicated by the dashed curve
in Fig. 16. From the figure, we see that H(ropt) = 890 bits. According to

Eq. (94) for H(r) in the absence of display noise, this value of H(ropt) is
also obtained for a noiseless analog display with a maximum visual capacity
Cs(rp) =2 x 890/1032[1 + (S/N)ﬁ] = 267 transitions, This value of Cz(rp) can
be achieved by an infinite number of analog displays, depending on the specific
form of the overall MTF Ro(w). If & is to have any practical meaning, we
should confine ourselves to the Ro(w) for the horizontal scanning direction

of the same television display device. We see from Fig. 8 that, with the

contribution of the video circuit response function to Ro(w) used in the
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calculation of Cz(r) for the horizontal direction, the maximum Cz is only
about 235 transitions. In order to increase this value to 267 transitions,
we find that it would be necessary to extend the cutoff frequency for hori-
zontal signals from NTV = 366 to about NTV = 400 lines. Thus, in this case,
the equivalence factor § is approximately 400/640 = 0.63.

d. Approximate Determination of (S/N)h. - We have argued that the value of the
parameter (S/N)h is expected to be on the order of 10. An attractive means of
experimentally determining the value of (S/N)h that is operationally effective
within the context of the present formalism is to assume that the calculated
value of ropt for sampled displays or noisy analog displays corresponds to the
preferred viewing distance of human observers. Then, the experimental value
of (S/N)h is obtained by varying the value of this parameter until the calcu-
lated ropt agrees with the most frequently occurring experimental value. Self-
consistency is to be achieved if the same value of (S/N)h is obtained, within
experimental error, from experiments with different sampling parameters and
with different scere contents.

For a preliminary experiment, we selected the sampled and unfiltered
picture of Lincoln reproduced [4] on the cover of Science, June 15, 1973.
This picture is characterized by NS = 14 horizontal samples across 2.25 in,
extreme undersampling Wy = ® full-width sampling s = 1, and a constant
printing function illuminating one entire sampling location [Eq. (54)].
The picture and its immediate surround were illuminated with tungsten lamps to
an average brightness of 150 ft-L. The viewing area was approximately 100 ft
long and free of obstructions or other known possible bias influences. It was
illuminated with natural light to a brightness of over 300 ft-L. The high
brightness levels were chosen so as to nearly reproduce the conditions under
which the MTF 0(v), employed in the calculations, was measured (6]. Thirty-
six subjects were chosen from the Laboratories population. These included tech-
nical and nontechnical, male and female personnel. All subjects with visual
defects used corrective lenses. Each subject was asked to choose the distance
at which picture looked best to him. The subjects were erncouraged to range
over as large an excursion of viewing distances as possible before making a
decision. No Jescription or commentary was given. The result of the experi-

ment is summarized by the histograwn in Fig. 17, which rhows that, with a 3-ft
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Figure 17. Summary of experimental results and analysis of the sampled
"Lincoln" picture [4]. The histogram indicates the number
of observations recorded as a function of preferred viewing
distance (see text for experimental details). The solid
curve represents the total information capacity H for the
horizontal direction (Ng = 14) as a function of viewing

distance, using the value (S/N), = 10. The vertical arrows
represent the viewing distance for maximum H and for 90%
maximum H.

distance bin, the most frequently occurring value of the preferred viewing dis-
tance fell in the range 27 to 30 ft. As can be seen from the figure, a con-
siderable spread was observed; the lowest preferred viewing distance was 22 ft
and the largest was 44 ft.

The calculated H(r) for this display, using Eq. (93) with (S/N)h = 10, is
also shown in Fig. 17. It is seen that the peak of H(r) at ropt = 29.3 ft cor-
responds to the most frequently observed preferred viewing distance. Further-
more, the general shape of the histogram, i.e., skewed to the right, is con-
sistent with the curve of H(r), which rises rapidly at small viewing distances
and fal off more gradually at large viewing distances. Note that nearly all
observers had a preferred viewing distance that corresponded to more than 90%

of the calculated maximum value of H(r).
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Although the value (S/N)h = 10 gives an accurate representation of the
subjects' preferences, s-atistical uncertainties in the data and uncertainties
in the measured [6] O(v) permit a fairly large range of acceptable values of
(S/N)h. Taking (S/N)h = 15 would shift ropt to about 32 ft; this value is
nearly as valid as that for (S/N)h = 10 because of statistical uncertainties
arising out of the relatively small population of subjects. A far wore sensi-
tive determination of (S/N)h could be made from more noise-limited displays,
such as one employing delta-function sampling (s = 0) and delta-function print-
ing (p = 0). Such experiments should be performed.

In spite of these uncertainties, we feel that the results of the experi-
ment and the calculation offer preliminary evidence that the subjects chose
the preferred viewing distance on the basis of a compromise between edge dis-
crimination ability and perceived signal-to-noise ratio, in accordance with
Eq. (93). The value (S/N)h = 10, derived from the experiment, lies well within
the range of values expected on the basis of the Weber-Fechner law and on the
basis of the calculated S/N of other noisy displays (see Section III.D). It
is not likely that visual capacity alone was operative, since in this case
Cs(r) has a calculated maximum value at rp = 23 ft. Thirty-five of thirty-
six subjects preferred a larger viewing distance. Nor can perceived signal-
to-noise ratio alone have been responsible for the observed preferred viewing

distances, since such a strategy would favor an infinite viewing distance.

e. The 17-Element Display. - Figires 18 through 22 give the results of calcu-
lations appropriate for a 17-element optical block processor of the type de-~
scribed in Section V. 1In particular, for an extremely undersampled 1l7-element
display, the signal-to-noise ratio S/N(r), the visual capacity Cs(r), and H
were calculated for the two extreme cases of delta-function sampling and
delta-function printing, and full-width sampling and full-wiith printing. The
properties of these two cases are distinctive and illustrate well our method
of analysis.

Figure 18 shows the perceived frequency spectra for the signal and the

sampling noise components of the total perceived intensity distribution at a

*For Ng = 17, the requirement wg >> w, = 2n/w, assumed in all the derivations
is not extremely well satisfied. Nevertheless, Eqs. (27) and (50) to (52) can

be employed to calculate approximately the desired performance characteristics.
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Figure 18.
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Perceived signal and noise spectra as a function of retinal
frequency for a display with N = 17 samples at a viewing
distance of 75 picture widths. The ordinate represents the
integrand of Eqs. (50) and (51) for S2 and N2, respectively.
The values of s and p are given in the figure.
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Perceived signal-to-noise ratio S/N as a function of viewing
distance in picture widths for displays with Ng = 17 samples.
The values of 8 and p are given in the figure.
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i Figure 20, Visual capacity Cs as a function of viewing distance in
{ picture widths for displays with N; = 17 samples. The
values of s and p are given in the figure.
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Figure 21. Total information capacity H as a function of viewing distance
in picture widths for displays with Ng = 17 samples. The
values of s and p are given in the figure. The value of the

parameter (S/N),, was taken to be 15.
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Figure 22. The fractional difference AH/H between the total information
capacities of the displays of Fig. 21 as a function of viewing
distance in picture widths.
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viewing distance of 75 picture widths. The ordinate representé the integrands
of Eqs. (50) and (51) for the perceived signal power 52 and the perceived noise
power Nz, respectively. The frequency coordinate is in units of cycles/degree-
of-vision. A Lorentzian power specturm ¢(w) = B [m2 + m:]-l was employed
in all the calculations. The display sampling parameters used, s = p = 0, mean
that we are considering delta~function sampling and printing, i.e., the input
signal is sampled and printed over an infinitely narrow range within the sam-
pling location. This is the arrangement that produces the maximum samplirg
noise. One sees from the figure that the signal part of the total spectrum is
concentrated at the lowest retinal frequencies, rolling off rapidly above about
10 cycles/degree-of-vision. On the other hand, the noise power is concentrated
in peaks centered around the sampling frequency (corresponding, at this viewing
distance, to 22 cycles/degree-of-vision) and its harmonics and in a low-fre-
quency peak near the value Vo corresponding to the maximum sensitivity of the
human visual system - 8 cycles/degree-of-vision.

To compute the perceived signal-to-noise ratio, according to Eqs. (50) and
(51) we calculate the area under the perceived signal and noise power spectrum
vs frequency curves, divide the signal area by the noise area, and take the
square root. In Fig. 19 are plotted the perceived signal-to-noise ratios
S(r)/N(r) so obtained as a function of viewing distance for the l7-element
display with s = 0, p = 0 and for a display with s = 1 and a constant print-
ing function (denoted by p = 1 in the figure) over one entire sampling location.
The S(r)/N(r) for the display with s = 1, p = 1 rises rapidly with viewing
distance, eventually approaching the predicted (r/w)2 law, as predicted by Eq.
(70). The S(r)/N(r) for the display with s = 0, p = 0 rises more slowly for
large viewing distances, ultimately reaching .a linear dependence on (r/w),
as expected from the entry in Table 1 for undersampled displays with s = 0 and
p=0. The s =1, p =1 display has superior S/N at all viewing distances, the
difference between the performance of the displays ranging between 6 and 10 dB
over the range of r shown in Fig. 19. This behavior is consistent with our
view that large sampling and printing widths favor signal-to-noise performance.

The visual capacity as a function of viewing distance is shown in Fig. 20
for the same two displays whose values of S/N are plotted in Fig. 19. The
curve for the display with s = 0, p = 0 follows the simple 1/r dependence Eq.
(28), siace we have set ﬁ(m) = R(w) = sinec (sm/ws) = 1 in Eq. (27) for Cz(r).
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Recalli:g that the visual capacity represcunts perceived sharpness in the absence
of noise, the results shown in Fig. 20 indicate that the display with s = 0,

p = 0 should provide a greater impression of sharpness than the s = 1, p =1
display. This is to be contrasted with the results of the S/N calculation,
which indicated superior ncise performance for the s = 1, p = 1 display.

In Fig. 21 is plotted the total information capacity H(r), obtained from
the calculated Cs(r) and S(r)/N(r) from Eq. (93). Here we have employed the
value (S/N)h = 15 for the effective signal-to-noise ratio of the human visual
system. As can be seen from Fig. 21, H(r) for both displays has the sam2 gen-
eral form: a peak at a viewing distance of approximately 130 picture widths,

a rapid fall-off at small viewing distances, and a more gradual drop at large
viewing distances. At very large viewing distaaces, the curves will approach
each other as the human visual system, not the display, becomes the limiting
factor in the determinatioa of the overall capacity of the display-observer
channel. The curves cf Fig. 21 indicate that the s = 1, p = 1 display provides,
with the human observer, a higher overall information capacity at all viewing
distances. This is better illustrated in Fig. 22, where the frectional differ-
ence AH/H between the s = 1, p =1 and s = 0, p = 0 displays is shown as a
function of viewing distance. Note *he rapid rise of AH/H at small viewing
distances. Figure 22 indicates that a simultaneous pair comparison of an s = 1,
p = 1 display and an 8 = 0, p = O display would yield a threshold viewing dis-
tance, below which the s = 0, p = O display would appear far inferior to the

s =1, p =1 display. This threshold viewing distance is calculated to be about
70 picture heights for illumination greater than about 100 ft-L. At lower bright-
nesses, the threshold will decrease markedly due to the shift of the peak of

the MIF of the humai visual system to smaller frequencies. For viewing distances
between about 70 and 300 picture widths, AH/H is relatively slowly varying,
averaging about 0.23. If we employ the value (S/N)h = 10, instead of 15, AH/H

in this range of viewing distances is reduced to an average of about 0.12.

f. Optimiaation of Displays. - Our method of analysis for one-dimensional
sampled displays can be employed to optimize the performance of a display by
seeking the maximum value of the total information capacity H as a function

of the various sampling parameters (e.g., number of samples, sampling width,
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printing function), the electronic bandwidth, and the viewing distance. Ex-
ternal constraints, such as limitations on the viewing distance, number of
samples, etc can also be accommodated.

In Fig. 23, we show the effect of varying the width of the printing func-
tion on the H(r) for the vertical (sampled) direction of television displays.
The values of p, the width parameter for the Gaussian printing function Eq.
(77), given in the figure, are the same as those employed to calculate the
corresponding Cz(r), shown in Fig. 9, and the S(r)/N(r), shown in Fig. 12.

The value p = 0.642 was that measured for the real kinescope described in the
discussion of the visual capacity in Section III.D. Comparison of Figs. 9,
12, and 23 shows that, whereas small values of p result in enhanced visual
capacity, and large values of p favor signal-to-noise performance, the behavior
of H(r) with p is substantially more complicated. The value of p for optimum
H(r) clearly depends on viewing distance. At small viewing distances r/h X 3,
H(r) is enhanced by increasing the printing width p from its observed value,
indicating that H(r) is dominated by signal-to-ncise considerations. On the
other hand, at larger viewing distances, H(r) is enhanced by employing smaller
values of p, showing that the value of S(r)/N(r) is sufficiently large to be
able to support some degradation in exchange for increased sharpness. The ab-
solute maximum value of H(ropt) is achieved for a value of p approximately
20% smaller than the observed value. Decreasing p beyond this point reduces
H(ropt) but gives some advantage at very large viewing distances. The value
of ropt itself achieves a minimum v.lue of approximately 5 picture heights.
Values of p that are too small or too large act to increase the optimum view-
ing distance. As a general comment, we call attention to the shape of the
curves; the curve of H(r) with the largest value of p, having the best noise
performance but the worst '"sharpness," has a soft, gradual rise at small r and
a comparatively broad peak, whereas the curve with the smallest value of p,
having the worst noise performance but the best '"sharpness,” has an abrupt rise
and a sharper peak. The abrupt increase occurs after the value of S(r)/N(x)
passes through the value unity [see Fig. 12].

At any particular viewing distance, we can compute the optimum value of
the printing width, subject to the constraint that all other display parameters

are held constant. An example of such an optimization technique is shown in
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Figure 23. Total information capacity H as a runction of viewing distance
in picture heights for the vertical direction (Ng = 480) of a
television display. The values of the parameter p, which
represents the effective width of the Gaussian printing
function, are given in the figure. The particular value
obtained from measurements of 2 commercially available kine-
scope is also indicated. The parameter (S/N);, was taken
to be 10.

Fig. 24. Consider a hypothetical 500-sample display with no band limitation
applied to the input signal. Let us assume that technical reasons have forced
us to consider only delta-function sampling (s = 0) and printing functions

whose intensity profile is constant over a fractional width p of each sampling
aperture on the display screen and is zero everywhere else [M(w) = sinc (pw/ma)].
We wish to know the optimum value of p for various viewing distances. Figure

24 plots the calculated H as a function of s (taking (S/N)h = 15) for several

viewing distances. From the figure, it is seen that, as the viewing distance

increases from 2 to 14 picture widths, the optimum value of p decreases from
unity to the value 0.56. Furthermore, as the viewing distance increases, the

sensitivity of H to the specific value of p decreases. For example, if p is

e

decreased from its optimum value by O 1, the cost would be a 46X drop in H at
a viewing distance of 2 picture widths, but only 2X at 5 picture widths. This
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Figure 24. Total information capacity H as a function of effective print-
ing width p for a hypothetical 500-sample display with s = 0
and wy = . Here p is the fractional width of each sampling
location that is activated with a constant intensity. The
values of the viewing distance, expressed in picture widths,
are given in the figure. The vertical arrows indicate the
values of p for maximum H. The parameter (S/N)h was taken
to be 15.

behavior can be uinderstood as follows. At small viewing distances, the display-
;: observer system is optimized by full-width printing because of its superior

4 signal-to-noise characteristics. As the viewing distance increases, the per-
ceived signal-to-noise ratio for p = 1 becomes large enough so that sampling
noise is far less influential in limiting total information capacity. It then

h pays to decrease p in order to gain the larger perceived shzrpness that is
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characteristic of small values of p. However, as the viewing distance contin-
ues to increase, the human visual system becomes the limiting factor in deter-
mining H; it then makes less and less difference just how the displ:y is de-
signed (for a given number of samples). Thus, curves of H vs p become pro-
gressively flatter.

If we relax the const.raint s = 0 and allow 8 to take on any value, we
have a maximization problem in two dimensions; at any viewing distance, H must
be maximized with respect to both p and s. For our hypothetical 500-elemenc
display, at a viewing distance of 2 picture widths, it turns out that p = 1
gives a relative maximum value of H regardless of the value of s. Thus, Fig.
25, which graphs H against s for p = 1, respresents the locus of relative max-
imum values of H as the sampling width is varied. The absolute maximum valuve
of H is achieved for the combination of parameter s = 0.43, p = 1. This value
of H is 11% larger than the value for s = 0, p = 1, which is the maximum achiev-
able H subject to the constraint s = 0. 1In a similar manner, one can perform
the two-dimensional maximization calculation at other viewing distances. For
example, we calculate that, in increasing the viewing distance from 2 to 5 pic-
ture widths, the optimum pair of s, p parameters shifts from s = 0.43, p = 1
tos = 0.99, p = 0.99.

The above example by no means exhausts the variables of the optimization
problem. We may introduce an electronic filter function of finite passband
before the sampling process is performed. The width of the passband then be-
comes a third variable which must be optimized simultaneously with s and p.

In addition, we may, of course, allow other forms of printing functions in ad-
dition to the simple constant P(x) of fractional width p.

The results of any optimizatior calculation, once performed at a partic-
ular viewing distance for a given number of samples, cannot be assumed to be
valid if the number of samples is changed. Figure 26 shows curves of H as a
function of the number of samples for 3 different sampling widths with the
viewing distance held constant at 5 picture widths and with a constant printing
function width p = 1. All the curves have the same general form, rising rapid-
ly at first but eventually saturating at a value determined by the limitations
of human visual system. It is noteworthy that, whereas full-width sampling
s = 1 is favored for greater than about 300 samples, half-width sampling s = 1/2

gives a larger value of H when the number of samples is less than 300. Indeed,
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Figure 25. Total information capacity H as a function of sampling width s
for a hypothetical 500-sample display with p = 1 and wy = =.
The ~“iewing distance is 2 picture widths. The curve represents
the locus of relative maximum values of H in the two-dimensional
space of s, p values. The absolute maximum of H is indicated
in the figure. The parameter (S/N)j was taken to be 15.

when the number »f samples is less than approximately 225, even s = 0 sampling

gives a larger value of H than does the case s = 1. This example serves to

emphasize that the number of display samples must be explicitly included in any
optimization calculation.
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SECTION IV
TWO-DIMENSIONAL ANALOG DISPLAYS - THE VISUAL CAPACITY

A. MATHEMATICAL FORMULATION

The visual capacity [11] for one~dimensional analog displays has been de-
fined in terms of the perceived visual response to sharp edge inputs. The cal-
culated edge width X, as perceived by the observer, then determines the maximum
number of resolvable edge transitions across a display of width w through the
simple formula Cz - w/xe. As discussed in ref. [11] and Section III.D of this

report, Cs represents the information capacity of a noiseless two-level com-
munication system. For noisy multilevel displays, the total information capa-
city H is proportional to Cs [Eq. (93)]. In the one-dimensional case, the analogy
between visual capacity and the maximum pulse transmission rate u of a communi-
cation channel is straightforward. For the case of two-dimensional displays, no
direct analogy exists for the simple reason that there is only one time dimension.
Nevertheless, 1f we continue to define information capacity as the base-two loga-
rithm of the total number of discrete states the system can assume, it is clear
that the information capacity of a two~-dimensional display will be proportional
to the number of discrete locations that can be perceived within a display of
area A, Accordingly, we define the two-dimensional visual capacity 032 as the
number of perceivable spots within the area A:

¢t = alo (109)

v2 e
Here O is the perceived area of a single spot - the response of the 'display-
observer system to a delta-function point input.

We shall calculate an expression for O in a manner analogous to the cal-

culation of the quantity X, for the one-dimensional case. Let distance on the

display screen be described by the polar coordinates p and &, where o is the
polar angle, as measured from the horizontal, and p is the radial distance from
: a point on the screen to the origin of the ccordinate system. The location of

the origin is arbitrary. We define the psychophysical response function Es(p,a)

et 02 N

as the perceived response to a unit delta-function input signal. The meaning of

the unit delta-function is as follows. The brightness units are defined such

¢t Caded

that the integral over the display screen of the response of the display to a

i 2t
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delta-function input of strength D is unity. Denoting the intensity pattern on
the screen by Is(p,a) and taking the delta-function input at the origin, we

must have
2n ]

] p do f da 16(0.0) =1 (110)
0

0 i

where

I,(p,a) =D [ = ‘2"" f d¢ R (w,4) exp[iwp cos (¢=0) ] (111)
4

0

Here Ro(w,¢) is the overall two-dimensional MIF of the display system as a
function of the magnitude w and direction ¢ (with respect to the horizontal) of
the two-dimensional spatial frequency vector. The response Is(p,a) is assumed
to be sufficiently localized for the integration over p in Eq. (110) to be ex- i
tended to infinity. Substituting Eq. (111) into Eq. (110) and performing the !
spatial integration, it is a straightforward exercise in Fourier aralysis to
show that our definition of a unit delta-function implies simply that its strength
is unity:

D=1 (112)

To obtain Eq. (112), we have employed the identity R(0,¢) = 1, the condition
that there be no amplification or attenuation of a dc imput.

In the spirit of linear systems analysis, as employed for the case of the
one-dimensional visual capacity, we shall compute the perceived response Ed(p,a)
using a two-dimensional MIF 0(v,¢) to describe the processing performed by the
human visual system., Here O(v,$) describes the perceived contrast for a simu-
soidal grating of retinal frequency v = wr/2m, oriented at an angle ¢ from the
horizontal.* Then, just as in the one-dimensional case, the perceived response
Es(p,a) is obtained from Eq. (111) by simply multiplying the integrand of this
equation by the function O(wr/2m,4). Setting D = 1, we have

E; (p,a) = f Sdw [ d¢ O(wr/27,4) R (w,¢) exp[iwp cos (¢=-a)] (113)

*This is an important assumpcion that must be justified by experiment. See
Section VI for initial experimental results that indicate that such an as-
sumption is valid for complex two-dimensional gratings.
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We note that, with the normalization condition Eq. (110), both Ia(p,a) and
EG(p,u) have the dimensions of inverse area. In fact, the magnitude of EG’ say
near p = 0, is on the order of lloe, where o, can be thought of as the inverse
square of an effective cutoff frequency for the combined display-observer system.
(For example, a "perfect" system would have unity response at all frequencies, so
that o, = 0. Then E0 diverges, as it should for a perfectly reproduced delta-
function.) The effective display area covered by E0 is on the order of Og* This
can be understood by noticing that the range of p in the integral of Eq. (113)

is determined by the fact that contributions for large arguments of the exponen-
tial in Eq. (113) tend to oscillate rapidly. These oscillations drastically
reduce contributions to the integral if |wp cos (¢-a) |3n, i.e., if the value of
p, aversiged over all angles, is much greater than oé 2, the inverse effective
cutoff frequency for the display-observer system., Thus, a simple, mathematically

convenient definition of the perceived area of a single spot Oe is in terms of

o 27
lloe -f p dp [ do Eg(p,a) (114)
0 0

Equation (114) defines the perceived spot area g, as the area integral of the

the integral,

square of the effective overall point spread function for a unit delta-function
input. It is directly analogous to the geometrical definition of the perceived
width of a single edge, employed in ref. [11l] in the derivation of the one-
dimensional visual capacity.

Equation (1i4) for o, can be expressed in terms of the display and
observer MIF's by substituting Eq. (113) for Ea(p,a) into Eq. (114). Perform-
ing the spatial integration gives rise to a two-dimensional delta-function in
frequency, which allows one of the two-dimensional frequency integrations to

be performed trivially. We are left with

1/0 = f wdw f dé O(wr/2n,¢) O(wr/2m, ¢ + w)

X RO (w,9) Ro(w’¢ + ) (115)
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Next, from Eq. (113), it is easy to show that the reality of Ed(p,a) requires

that
R (w,¢ + 1) = B_"(6,0) (116a)

0(w,d + 1) = 0 (w,0) = 0(w,) (116b)

Using the results Eqs. (115) and (116), Eq. (109) gives us the expression

for the visual capacity,

2n
¢k, () -Af — f dé 0%(wr/27,9) IRo(m,cb)lz (117)
4n
0 0

Comparing Eq. (117) with Eq. (26) for the one-dimensional visual capacity,

we see that both expressions involve the integral of the square cf the
magnitude of the combined MIF of the display and the human visual system.
Equation (117) explicitly includes the effect of any anisotropy of the display
or observer response. It should be emphasized that 032 regresents the number
of perceivable 8gpots within a display cf area A, whereas Cv represents the
number of perceivable edges* across a display of width w, Accordingly, we
expect that 032 is a much largerhumber than CT. Indeed, one might expect
that, for nearly isotropic displays, C32 = (03)2. In the following, we

shail see to what extent this expectation is valid.

*The one-dimensional visual capacity was defired in terms of x_, the effective
edge transition width. However, it can be shown rigorously tﬁat Xe also
represents the effective width of the response of the display-observer system
to a delta-function input., Therefore, cI also represents the number of
perceivable line segments across a one—deensional display of width w.
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B. PROPERTIES OF 032(r)

1. Far-Field Viewing
In this section, we consider sufficiently large viewing distances such

that the following inequality is satisfied:

r/21w° >> 1/Min [mM(¢)] (118)

vhere Min[mu(¢)] represents the minimum value of the cutoff frequency of
the display MIF Ro(m.¢). In that case, Ro(m.¢) in the integrand of Eq. (117)
may be replaced by unity, so that sz(r) is given by

2%

cl,(x) = A f f::—;’ f d¢ 0% (ur/27,$) (119)
0 0

We now approximate O (wr/2m,¢) by the isotropic MIF O(v). This approximation
is supported by the experimental results presented elsewhere in this report
(see Section VI). 1In that case Eq. (119) becomes, after transforming to the

retinal frequency coordinate v = wr/2w,

sz(r) = (2ﬂA/r2) f dv v 02(\:) (120)
0

From the measured O(v) (Fig. 5), we compute numerically

f dv v 0%(v) = 2.57 voz 3 o.1sz./(e‘;")2 (121)
0

where we have employed the value 9: = 1,84 min of angle [Eq. (30)] for the
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perceived angular width of a single perfectly reproduced edge. From
Eqs. (120) and {121), the expression for Ctz(r) at large viewing distances is

CT

» 2
Lo = 0:970 A/(0 1) (122)

valid when the inequality Eq. (118) is met., The physical meaning of Eq. (122)
is that, at large viewing distances, the two-dimensional visual capacity is
simply the solid angle A/r2 subtended by the display divided by 1.031(0:)2.
the perceived solid angle subtended by a single perfectly reproduced delta-
function spot. Comparing Eq. (122) with ihe expression [Eq. (28)] Ct(r) =
u/6:r for the one-dimensional visual capacity at large viewing distances, we
see that, for a rectangular display, 032 is nearly exactly equal to the pro-
duct of the one-dimensional visual capacities for the horizontal and vertical
directions. The small numerical difference is geometrical in origin and

arises from the definitions of xe and oe.

2. Near-Field Viewing
We now cousider sufficiently small viewing distances such that the
display cutoff frequency mM(¢) always corresponds to retinal frequencies

much smaller than vO:

r/2nvo << 1/Max [mM(¢)] (123)

Thus, we can replace O(v,¢) in Eq. (117) by the low-frequency linear
asymptote Eq. (32). Equation (117) becomes

2n o
ch,(x) = 0.335 & (x/2mv ) f do f do w® R (0,0)]? (124)
0 0

From Eq. (124), it is seen that, in rzar-field viewing, sz(r) increases as
the square of the viewing distance, as does the one-dimensional visual
capacity [Eq. (33)]). Thus, even for isotropic displays, Ctz(r) is not pro-
pertional to [Ct(r)]2 at small viewing distances. This result is profound and

requires special comment. It arises from our representation of the two-
dimensional response of the human visual system by a function 0(v,$¢), defined
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in terms of the perceived respcnse to a one-dimensional sine-wave grating
with retinal frequency of magnitude v, oriented at an angle ¢ from the
h~rizontal. This statement, along with the use of the low-frequency linear
asynptote derived from one-dimensional sine-wave measurements [6] at ¢ = n/2,
leads directly to the result that both Cz and sz are proportional to r2 at
small viewing d stance. It is possible to construct & model in which this is
not the case. Suppose, for example, the visual system operated with indepen-
dent, highly oriantation-specific frequency sensors, sensitive to the compon-
ent of the vector v along two mutually perpendicular directions, say ¢ = 0
and ¢ = 1/2., 1In that case, we might expect O(wr/2m,¢) in Eq. (117) to be a
separable function of the components of v along ¢ = 0 and ¢ = n/2, i.e.,

O(wr cos ¢/271) O(wr sin ¢/27), where O(v) represen:s the measured [6] one-
dimensional MTF. Then, Eq. (117) would indeed yield sz(r) N [Ci(r)]2 for
isotropic displays at small viewing distances. However, experimental
evidence, presented in Section VI, supports the existence of a nearly iso-
tropic 0(v,¢).

As an example of the effect of display anisotropy on sz(r) at small
viewing distances, we consider a hypothetical anisotropic display with
elliptical symmetry. The passband s flat [Ro(m,¢) = 1] with a maximum
frequency U in the horizontal direction and Orry in the vertical direction.
The principal axes of the elliptically shaped two-dimensional passiand are
assumed to coincide with the horizontal and vertical directions. We define

Wyo 88 the geometric mean of Wh and va:

Wy = (th wm)l/2 (125)

The dimensionless anisotropy factor a is defined according to

aw v M (126)

The range of a is =1 < a < + 1, with a = 0 corresponding to “he circular
passband of an isotropic display. With the definitions Eqs. (125) and
(126), the cutoff frequency wM(¢) for elliptical symmetry is given by
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l-a
(¢) = (127)
“u ‘o 1+ 2a cos 2¢ + a2

Then Eq. (124) for sz(r) in the near-field viewing limit becomes

n/2
Csz(r) = 0.335 A (r/21n)o)2 f d¢ m:((ct) (128)

0

The integration over angle can be performed analytically, giving us the result,

CLy(0) = 0.526 A wl (xizmv)? [ + 2D/ - &),
for r/Zwvo << wﬁi (- |a|)/(1 +|a|)] (129)

For a constant passband area ﬂmuo, the effect of the anisotrovoy is

entirely cont«ined in the factor (1 + a )/(1 - a ) We see that C (r) is
enhanced by display anisotropy at small viewing distances. This is a direct
result of the quadratic increase of Oz(v) at low retinal frequencies, making
it profitable to trade off increased bandwidth over a certain range of angles

against decreased bandwidth at other angles.

3. Maximum Visual Capacity

Just as in the case of the one~dimensional visual capacity, sz(r)
exhibits a maximum at a viewing distance rp, which depends on the band-limiting
characteristics of the display system. As a simple example, we once agai..
take the case of a flat passband with elliptical symwetry R(w,¢) = 1 for
w< wM(o), with mM(¢) given by Eq. (127). Differentiating Eq. (117) for

Cv2 with respect to r, the condition for maximum visual capacity is

27 wx('b)r /2m

fd¢ f dvv—o(v)=0 (130)
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After a partial integration of Eq. (130), the maximum visual capacity can be

written in the form

2n
Cp(r,) = (a/8rd) f a6 wy(®) 0 [y () /21] (131)

0

For an isotropiz dirplay a = 0, Eq. (130} can be easily solved

numerically, usinug the measured [6] O(v), to jiive

rp = 1.32 (2nvo/wM°)

= 3.80 x 103/u:Mo (132)
From Eq. (131), the maximum visual capacity is
T n 2,2, 2 ,
Cvz(rp) 3 (A mMD/w ) 07(1.32 )o)
- 1.00 (A wy /1) (133)

where we have used the value 0(1l.32 vo) = 1,13 (Fig. S). From Eqs. (132)

and (133), we can make two interesting observations. First, comparing the
viewing distance rp, given in Eq. (132), with the result [11] for the
equivalent one-dimensional display shows that r is about 11% smaller for CT
than for CT. This difference is not consideredp;ignificant. Second, sincevz
the quantity Awuzlﬂz represents the product of the number of TV li;es for

the horizontal and vertical directions of a rectangular display, Cvz(rp)

is numerically equal to the product of the maximu m values of the one~dimen-

sional visual capacities for the horizontal and vertical directions.

For the case of anisotropic displays |a| > 0, Egqs. (130) and (131)
must be solved using a computer. However, we can determine the manner in
which anisotropy affects rp and Cz(rp) by performing a perturbation calcu-
iation. If Ial << 1, we can expand the integral in Eq. (130) in a Taylor
series in a. The procedure is straightforward but somewhat lengthy.
Equation (127) for mM(¢) is expanded in a Taylor series, keeping terms on
the order of az. The result is inserted into Eq. (130), and the first two

; derivatives of the integral with respect to a 2re calculated. We permit rp
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to vary from its a = O value in order to ensure that the integral vanishes.
We find that the first non-vanishing contribution to the change Grp in the

viewing distance for maximum C:Z is on the order of a™:

2
-1 2§ d In (d 0°(v)/dv)
brpfrp == % e 11 + TR v (134)

v=1,32 v
o

From the measured O(v), we estimate the quantity in the square brackets to

be 1.3. Thus, Eq. (134) becomes

st Jr = =0.57 a?; for |a] << 1 (135)

In a similar manner, we find numerically,

T T ve 2
scvz(rp)/cvz(rp) = -0.75 a°; for |a] << 1 (136)

where Gczz(rp) is the change in the maximum value of C32 due to anisotropy.
From Eqs. (135) and (136), it is seen that the effect of anisotropy is
to lower the maximum two-dimensional visual capacity and shift the position
of the peak to smaller viewing distances. Because of the a2 dependence, the
effects are actually quite small for reasonable values of a. From Eq. (136),
we see that the value |a| ¥ 0.37 is needed to lower C:Z(rp) by 102 from its
a = 0 value. This corresponds to an aspect ratio th/va 2 2.2 [see Eq.
(126)]. Even larger aspect ratios are required to reduce rp by 10Z. These

results are consistent with early experimental work [22] which found that,

for spot aspect -atios less than about 2:1, the resolution limit of a cpot

is determined only by its area.

E i C. A CALCULATED EXAMPLE

As an illustrative example of the above results, we have calculated
CEZ(r) for a hypothetical anisotropic display. We assume that the display
] : is characterized by a two-dimensional MTF with elliptical symmetry and that
the passband is flat, with the bandwidth wM(¢) determined by Eq. (128). In
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the calculation, the area of the passband mu, 2 was held constant as a was

varied in order to isolate the effect of anigztropy. We assumed a square
display of width w, so that A = wz. The results are shown in Fig. 27, where
032 is plotted as a function of viewing distance for a particular value of
the area of the passband corresponding to a N

v
for a = 0. Curves are shown for a = 0, 1/3, 2/3, 5/6, and 0.98, corresponding

= mMow/n = 366.6 line display

to values of the frequency ratio mHv/mHh =1, 2, 5, 11, and 99, respectively.
From the figure we note the following important conclusions:
(1) Large anisotropies are required in order to produce an appreciable
effect; for a = 1/3, the drop in the peak of 032 from its
a = 0 value is only about 8% [in agreement with Eq. (136)];
(2) As the anisotropy is increased, the peak of 032 is depressed
and moves to smaller viewing distances [in agreement with Eq. (135)];
(3) For large anisotropies, sz is enhanced at very small viewing
distances [in agreement with Eq. (129)], whereas it is strongly

depressed at intermediate viewing distances.

D. SUMMARY

Our results indicate that for noiseless, analog displays, the one-
dimensional visual capacity Cz is adequate for treating two-dimensional dis-
plays whose anisotropy factor lal is less than about 1/3 (frequency ratios
X 2). This conclusion is based on the small effect of anisotropy on 032 for
la| X 1/3 and on our derived results showing that sz is numerically
almost exactly equal to the product of the one-dimensional visual capacities
for the horizontal and vertical directions at their respective maxima and at
very large viewing distances. This is a gratifying result, for it shows that
the simpler one-dimensional descriptor can be applied to most practical
situations. For highly anisotropic displays, the two-dimensional visual
capacity gives results that cannot be simply obtained from the one-dimen-
sional counterpart., In these cases Eq. (117) for sz can be employed to
calculate the effect of anisotropy on the number of perceivable spots at any

viewing distance.
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Figure 27. Two-dimensional visual capacity CEZ as a function of viewing

distance in picture widths for a hypothetical anisotropic
analog display. Thne display is characterized by a flat two-
dimensional MTF with elliptical s '‘mmetry. The area of the
passband corresponds to tnat for n isotropic dispiay with
Nyy = 366.6. The values of the anisotropy factor a are
given in the figure.
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SECTION V

OPTICAL BLOCK PROCESSOR

To provide experimental input to the analytics” studies described in
this report, a real-time optical block processor was constructed that has
the capability of producing sampled pictures with a wide variety of sampling
and printing functions. %Lie basic technique utilized an array of plexi-
glass "light pipes" to subdivide and average the luminance of an image iato
a finite numbeir of picture elements. The processor has the capability of
handling, in a simple and direct way, both color and black and white images,
without the expense and complication of digital processing technicques.

A sketch of the apparatus is shown in Fig. 28, and a photograph of
the actual device constructed is shown in Fig. 29. The apparatus consists
of 1050 uniform size plexiglass blocks (0.3 in. x 0.3 in. x 2 in. each)
glued together to form a 35 x 30 sampling array. The sides of the plexi-
glass blocks were coated with aluminum paint to increase the side reflec~
tivity of the channels, and the front and back surfaces of.the assembled
array were polished. Ground glass was placed over the front (or sampling
function side) to act as an image diffuser and over the back (or printing
function side) to act as an image plane. Various printing and sampling
functions were produced by superimposing the desired aperture functions over
the appropriate side of the display. Simple apertures were made by machining
thin aluminum sheet stock to the required geometry; more complicated apertures
can be made on glass plates using photographic techniques.

The processor is operated by prcjecting an unsampled (analog) image
onto the sampling func~tion side of the display. The resultant image pro-
duced on the printing side of the display can be either viewed directly or
photographed. The technique has the virtue of being able to produce sampled
images in a large format, at high brightness, and in real time.

Figure 30 shows zn original image that was used to produce the pro-
cessed pictures shown in Figs. 31 and 32, Figure 31 is an example of a
picture produced with full-width (s = 1) block sampling and full-width (p = 1)
block printing. Figure 32 is the same image with the same number of elements,

but with full-width (s = 1) block sampling and circular-aperture printing with
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Figure 28. Side view of the optical block processor.
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Figure 29. Photograph of the 1050-clement analog block processor. The
sampling and printing apertures and the ground glass image
planes have been removed for the photograph.
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Figure 30. Photograph of the analog input used to
produce the optically processed images
shown in Figs. 31 and 32.
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Figure 31. Sampled image produced from the image shown in Fig. 30
usirg che analog optical block processor with full-width
block sampling and full-width block printing.




R co by

TR N R T

Figure 32. Sampled image produced from the image shown in Fig. 30
using the analog optical block processor with full-width
block sampling and circular-aperture printing.

a ratio of active area to total block area of approximately 0.5 (p ¥ 0.7).
Although these pictures have been badly distorted by the photographic process
,» S/N, H, and Lot

can be clearly demonstrated. Most observers judged Fig. 32 sharper but nois-

used to produce this report, the general properties of C

< R

ier than Fig. 31. Most observers also stated that they could obtain more
information from pictures similar to Fig. 31 than from those similar to
Fig. 32, and most found that the optimum viewing distance for Fig. 31 is
somewhat smaller than that for Fig. 32, These results are in qualitative
agreement with the analytic predictions of Sections III.D and E,

Note that the conventional approach to sampling noise in images
suggests that the optimum viewing distance occurs where the eye acuity limit
coincides with the sample spacing. In Figs. 31 and 32, the sample spacings
are identical; only the printing functions are different. Yet viewer
response to the two pictures in terms of perceived sharpness and noise was
entirely different and in accord with the general observations arising out

of our analysis.
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Sampled pictures covering a wide range of sampling and printing func-
tions can be produced to test the general validity of the image descriptors
described in this report. Whereas our preliminary experimental results are in
good agreement with the results of Section III, further tests are required
to quantify the experimental observations and to include a large selection

of observers responding to a statistically significant distribution of images.
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SECTION VI

VISUAL PROCESSING OF COMPLEX TWO-DIMENSIONAL GRATINGS

A. BACKGROUND

The image descriptors developed in Sections III and IV of this report de-
pend on the applicability of linear systemz analysis to the human visual sys-
tem, It is known, however, that under most conditions, the human visual re-
sponse is highly nonlinear. For example, the luminance response is roughly
logarithmic and contains both thresholds and saturation points [23]. A useful
question to ask in connection with any real system is whether, over the oper-
ating range of interest, the assumption of linearity is valid. Some experi-
mental success along these lines has been achieved by Blakemore and Campbell
[24] and by Campbell and Robson [25] with square wave gratings. However, it has
been reported that the application of linear analysis to visual problems seems
to fail at low spatial frequencies [26]. (This conclusion is inconsistent
with the results of the experiments pr<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>